Math 291-1: Midterm 2 Solutions
Northwestern University, Fall 2015

1. Determine, with justification, whether each of the following is true or false.
(a) There exists a 2 x 2 non-identity matrix A such that A% = I.
(b) The space of 3 x 3 upper-triangular complex matrices has a 7-dimensional complex subspace.

Solutions. (a) This is true. Let A be the matrix describing rotation by 27/5, so concretely

_ [cos(2m/5) —sin(27/5)
A= <sin(27r/5) cos(27/5) > :

This is not the identity but A° describes rotation by 27, which is the identity.
(b) This is false. A 3 x 3 upper-triangular complete matrix is of the form

a b c

0 d e | wherea,b,cd,e,feC.

0 0 f
This has 6 independent parameters, so the space of 3 x 3 upper-triangular complex matrices is
6-dimensional over C and hence can’t have a subspace of larger dimension than 6. O

2. Suppose that 7 : R? — R3 is a linear transformation such that

4 0
T<_02>: 0 andT(i)z 0
0 1
and that S : R3 — R? is a linear transformation such that
2 0
S10 :<(1)) and S [0 :<(1)>
0 1
If A denotes the standard matrix of the composition ST, compute A? explicitly and explain why

there is not enough information to determine the standard matrix of T'S.

Solution. We have

Then
2 2

(ST)@:S _8 -5 |0 :—(3)):(_01),

which gives the second column of A. Next,

()G O)-3r ()02 () () - ()



SO

. 2 2 0 0 . 0 .
(ST)<O>:S ofl=s((o]+([o]]=s[o]+s]|o0 :(0>+<1>=<1>,
1 0 1 0 1

which gives the first column of A. Hence

/1 -1 o (1 =1\ (1 -1\ (0 -1
A_<1 0)’ s04 _<1 0><1 0>_<1 1>'
To compute the standard matrix of T'S we would have to know the value of

0
(Ts) |1,
0

which cannot be determined from the given information since ( ! ) is not a linear combination of

<§> and (?). A more high-brow way of saying this is that T'S is uniquely determined by 3 pieces

of linearly independent data, but we are only given two. O

3. Suppose vi,vy € R? are linearly independent and that A is a 2 x 2 matrix such that Av; =
vy and Avy = vi. Show that the columns of A span R2.

Bonus (1 extra point): If vi and vy have the same length, show that A describes a reflection.

Proof. The key point is to show that A is invertible. There are multiple ways of doing this—here
are a few.
First, from the given information we have

A (vl V2) = (v2 v1)

where the two matrices here apart from A have v1, vo, in some order, as their columns. Since v, v
are linearly independent, (v1 VQ) is invertible so

-1
A= (V2 Vl) (V1 VQ) .

Since A is thus the product of two invertible matrices, it is invertible itself and so its columns span
R2.

Second, suppose that x € R? satisfies Ax = 0. Since vi, vy are linearly independent in a
2-dimensional space, they must span R? so

X = C1V] + C2Va

for some c¢q,co € R. Then

0= Ax = 1 Avy + 0 Avy = ¢1Vo + oV,

which since vi, vy are linearly independent implies ¢; = co = 0. Then x = Ov; + Ovy = 0, so the
only solution of Ax = 0 is x = 0. Thus A is invertible, so its columns span R2.



Third, let b € R%. As above, v{, vy span R? so
b =c1vi + cave
for some c¢1,co € R. Then
A(cavi + c1ve) = caAvy + c1Avy = cavy + ;v = b,
which shows that Ax = b has a solution for any b € R%. Hence A is invertible, so its columns span
R2.
Fourth, let x € R2. As above, v, vs span R? so
X = C1V] + C2V2
for some cq,co € R. Then
A’x = A(Ax) = A(c1Avy + coAva) = A(c1va + covy) = c1Avy + o Avy = c1v1 + cave = X

Since A%x = x for any x, A2 = I, so A is invertible and equals its own inverse. Thus the columns
of A span R?.

Bonus: Let L be the line which bisects the angle between vi and vo, and let R denote the
transformation which reflects vectors across this line. Then Rv; = vo = Avy and Rvy = v = Avs.
(Note this wouldn’t be true if vi and vo did not have the same length.) Since v, vy span R?, we
can write an arbitrary x € RZ as x = ¢;vy + CoVa, SO

Ax = c1Avi + c0Avy = ¢1 Rvy + coRvy = Rx.
Since Ax = Rx for all x € R?, A = R so A is a reflection. O
4. Let A be an n X n matrix and suppose that x,y € R™ satisfy
Ax =x and Ay = 3y.

Also, let U be a subspace of R™ with the property that if u € U, then Au € U as well. If x+y € U,
show that x e U and y € U.

Proof. By the property U has, since x +y € U, we also have
Ax+y)=Ax+ Ay =x+3y € U.
Since x +y,x+ 3y € U,
(x+y)—(x+3y)=-3yecU

since U is closed under differences (to be clear, —(x + 3y) is in U since U is closed under scalar
multiplication, and then (x +y) + [—(x + 3y)] € U since U is closed under addition. Since U is
closed under scalar multiplication,

1
—g(—3}’) =yelU
Since x+y € U and y € U, we get
(x+y)—y=x€U

as well, so x,y are both in U. O



5. Let W be the subspace of P3(C) consisting of the polynomials p(x) € P3(C) which satisfy
p(z) +p(—z) = 0.
Find a basis for W considered as a vector space over R.
Proof. If p(x) = co + c1w + cox? + 323 with cg, c1, c2,c3 € C, to be in W this must satisfy
p(x) + p(—2) = (co + 1@ + cox? + e32°) + (co — 1 + cox? — c323) = 20 + 2c022 = 0.

This forces 2cq = 2co = 0 since 1 and 2 are linearly independent, so ¢y = ¢ = 0. Thus an element
of W is of the form
p(z) = c12 + 32 where ¢, 3 € C.

Writing ¢; = a1 + tb; and c3 = a3 + ibs where a1, b1, a3, bs € R, this becomes
p(x) = (a1 +iby)x + (a3 + ib3)2® = a1z + by (ix) + azx® + bz (iz?),

which shows that x, iz, 23, iz3 span W over R.
To check that these are linearly independent over R, suppose

a1z + by (iz) + azz® + b3 (izx®) = 0
for some a1, b1, as,b3 € R. Then

(a1 + iby)z + (a3 + ib3)z> = 0,

so a1 + iby = 0 and a3 + ibg = 0 since z, 2> are linearly independent. Hence a; = b; = 0 and

az = bz =0, so z,ix, 23, ixz® are independent over R, and hence form a basis for W over R. ]



