Math 291-1: Midterm 2 Solutions
Northwestern University, Fall 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample. (A counterexample is a specific example in which the given
claim is indeed false.)
(a) If A € M3(R) describes reflection across a line passing through the origin, then A is invertible.
(b) The space My(R) does not have a 5-dimensional subspace.

Solution. (a) This is true. A reflection satisfies A?x = x for all x € R?, since reflecting a vector,
then reflecting the result will ways give back the original vector. Hence A2 = I, so AA = I and
A is invertible since there is a matrix (namely A itself) such that multiplying by A on either side
gives the identity. (In other words, a reflection is its own inverse.)

(b) This is false. For instance the set of all matrices of the form

SO O 0o 2
O OO
O OO0
O O O

is a 5-dimensional subspace of My(R). Indeed, this set is just the span of
En1, Erg, Eag, By, Eoa,

where FEj; is just the matrix which as a 1 in row ¢, column j and zeroes everywhere else. This
span is a subspace of My(R), and since E11, F19, E13, E14, F21 form a basis for it, this subspace is
5-dimensional. ]

2. On the board (or in a separate file) is a proof that if A is a 2 x 2 matrix and vi,ve € R? are
linearly independent vectors such that

Av; =0 and Avy € span(vy),

then A2 = 0. Using this as a guide, prove that if A is an n x n matrix and vq,...,v, € R” are
linearly independent vectors such that

Avy; =0 and Avy € span(vy,...,vi_1) for k=2,...,n,
then A™ = 0.

Proof. We first claim that A’v, = 0 for each £ = 1,...,n. Indeed, we're given that Av; = 0. Since
Avy € span(vy), we have Avy = bvy for some b € R. Then

A?vy = A(Avy) = A(bvy) = bAv, = b0 = 0.
Now, Avs € span(vy, va), so
Avs = ¢1vy + ¢V for some ¢, ¢ € R.

Thus
A2V3 = A(AVg) = A(clvl + CQVQ) = c1Avy + coAvy = cobvy,



and then
A3V3 = A(A2V3) = A(Czbvl) = CQbAVl =0.

Notice the pattern in the computations above: Avs depended on v; and vo, and after multiplying
by A we see that one term is “killed off” so that Avs only depends on vy, and then multiplying by
A once more Kkills this final term off as well.

The same reasoning will show that Av, depends on vi,Vva, vs, A%v, only depends on vq, Vv,
A3v, only depends on vy, and A*vy is zero, and that the pattern continues for other v;. To phrase
this all more clearly, consider the cases worked out above as base cases and suppose we have shown
that A'v; = 0 for all i up to some k. (You did not have to write this out as formally in your own
solution; noting the pattern above would have been enough.) Note that this implies

Akv; =0 foralli <k

as well since once A'v; is zero, multiplying by more powers of A will still give zero. Then since
Avyi € span(vy,...,Vvy), we have

Aviy1 = dyvy + - - - + di vy for some dy, ..., d; € R.
This gives:

ARy = A¥(Avip) = A¥divi + - F dpve) = Ay - F APV =04+ -+ 0 =0.
Thus knowing that A’v; = 0 for all i < k implies that A*+1v, | = 0 as well, so we conclude that
Alv, = 0 for all ¢.

Since multiplying 0 by more powers of A still gives 0, this implies that

A" =0foralll1 <k <n.

Now, vi,...,Vv, are n linearly independent vectors in R", so they automatically span R". Let
x € R". Then
X =ai1vy+ -+ a,v, for some aq,...,a, € R.
Hence

Ax = a1A"vi+ -+ a,A"vp, =04+ ---4+0=0,

so A"x = 0 for all x € R". Thus A™ = 0 as claimed. (The point is that one you know A™ =0 on a

basis of R", it must be zero on all of R™.) O
3. Suppose A is an n X n matrix and that vq,...,v, € R" form a basis of R”. Show that A is
invertible if and only if Avy,..., Av,, form a basis of R".

Proof 1. Let [vl e vn] be the n x n matrix with the given basis vectors as its columns. This

matrix is invertible by the Amazingly Awesome Theorem since its columns form a basis of R".
Then
A[Vl Vn] = [Avl Avn],

where the matrix on the right is the one with Avy,..., Av,, as columns. If A is invertible, then the
product on the left is invertible since it is a product of invertible matrices, so

[Avl Avn}



is invertible and hence Avy,..., Av,, form a basis of R"™ by the Amazingly Awesome Theorem.

If instead Avy,..., Av, form a basis for R, then the matrix on the right is invertible. Multi-
plying both sides on the right by the inverse of [vl e vn] gives
—1
A — [Avl v Avn] |:V1 . VTL] ,
which expresses A as a product of invertible matrices. Hence A is invertible as claimed. O

Proof 2. Suppose A is invertible and suppose
c1Avy + -+ ¢ Av, = 0.
Multiplying through by A~! gives

c1vi+ -+ epvp = ATT0=0.

Since v1,...,Vv, are linearly independent, we must have ¢c; = --- = ¢, = 0, so we conclude that
Avi,..., Av, are linearly independent. Since these are n linearly independent vectors in an n-
dimensional space, they automatically form a basis.
Conversely suppose Aviy, ..., Av, form a basis of R" and suppose x € R" satisfies Ax = 0.
Since vi,..., v, form a basis of R", we have
X =c¢1vy+ -+ ¢, vy, for some cq,...,c, € R.
Then

0=Ax =c1Avi + -+ ¢, Av,.

Since Avy, ..., Av, are linearly independent, ¢y, ..., c, are all zero, so
x=0vi+---4+0v, =0.

Thus the only solution to Ax = 0 is x = 0, so A is invertible by the Amazingly Awesome Theorem.
(There are of course other possible proofs, using other aspects of this theorem.) O

4. Suppose V is a complex vector space of dimension n over C. Complete the following proof that
V has dimension 2n over R.

Proof. Let vi,...,v, € V be a basis for V over C. We claim that

V1, W1, V2, 1V, ...,Vn, 1Un

form a basis for V' over R. First, suppose that
arvi + by (iv1) + - - + apvy + by(ivy) =0
for some real scalars ay,bq,...,ay,,b, € R. This equation is the same as

(a1 4 ib1)vr + - - - + (an + iby)v, = 0.

Since vy,...,v, are linearly independent over C (because they form a basis for V' over C), all
coeflicients above must be zero:

a1 +1ib1 =0,...,a, + b, = 0.




But a complex number is zero if and only if both its real and imaginary parts are zero, so we
conclude that
ai :Ozbl,...,an:O:bn,

and hence vy, vy, vo, v, . .., vy, iU, are linearly independent over R.
Let w € V. Since vi,...,v, span V over C, there are complex scalars a; + ib; € C (with
aj,b; € R) satisfying

w = (a1 +iby)vy + -+ + (an + iby)vy,.

But this can be written as

w=av1 + bl(ivl) + -+ apvn + bn(ivn),

which expresses w as a linear combination of vy, iv1, v9,ivs, ..., Uy, v, over R. Hence these vectors
span V over R, so they form a basis for V over R. There are 2n vectors in this basis, so V has
dimension 2n over R. O

5. Let W be the set of all polynomials p(z) in P3(R) such that p”(x) + p'(x) + p(z) = 0.
(a) Show that W is a subspace of P3(R).
(b) Find a basis for W and hence determine the dimension of W.

Solution. (a) First, the constant zero polynomial 0 satisfies
0"+04+0=0+0+0=0,

so 0 e W. If p(x), q(x) € W, then

/

(p(x) + q(2))" + (p(x) + q(2))" + (p(x) + q(x)) = p"(2) + ¢"(x) + p'(z) + ¢'(x) + p(z) + ()
= (p"(x) +p'(x) + p(x)) + (¢"(x) + ¢'(x) + q())

where in the third line we use the fact that p(z) and ¢(x) are both in W in order to say that the
previous expressions were zero. Hence W is closed under addition. Finally, with p(x) € W and
c € R, we have

(ep(z))" + (ep(x)) + (ep(x)) = cp”(z) + cp'(z) + cp(x) = c(p” (x) + p'(z) + p(x)) = 0 = 0,

so cp(xz) € W and W is closed under scalar multiplication. Thus W is a subspace of P3(R).
(b) We first determine explicitly what an element of W looks like. Suppose

p(z) = a+br + cx® + da® € W.
Then p”(x) + p/(x) + p(z) = 0, so
(2¢ 4 6dx) + (b + 2cx + 3d3:2) + (a + bz + cx® + d:z:?’) =0.

Rearranging gives
(2¢ + b+ a) 4 (6d 4 2¢ + b)x + (3d + ¢)a® + da® = 0.



In order for a polynomial to be zero requires that the coefficients of z* each be zero, so we get that

a+b+2c =0
b+2c+6d=0
c+3d=0

d=0.

Solving this system gives a = b = ¢ = d = 0, so p(z) = 0. Hence only thing in W is the zero
polynomial, so W = {0} and is thus zero dimensional. By convention, a basis for W is the empty
set () (with nothing in it), but no points were deducted for missing this subtle point. O



