
Math 291-1: Midterm 2 Solutions
Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) There is no 2× 2 matrix A such that A2 ∕= I but A4 = I.
(b) There is no vector space over C which has dimension 5 over R.

Solution. (a) This is false. Let A =
!
0 −1
1 0

"
, which describes rotation by π

2 . Then A2 =
!−1 0

0 −1

"
is

not the identity but A4 = (A2)2 = [ 1 0
0 1 ] is.

(b) This is true: if V is n-dimensional over C, then it is 2n-dimensional over R so this dimension
over R can never be odd. (This uses the fact that if v1, . . . , vn forms a basis for V over C, then
v1, iv1, . . . , vn, ivn forms a basis for V over R as shown on a homework problem.

2. Suppose A is an n × n matrix and that v1, . . . ,vn ∈ Rn are linearly independent vectors such
that

Av1 = v2, Av2 = v3, . . . , Avn−1 = vn, and Avn = v1.

To be clear, A has the effect of sending each of v1, . . . ,vn to the next vector in the list, except that
vn is sent to v1. Show that An = I.

Proof. First we claim that Anvi = vi for each i. Indeed, note that multiplication by A increases the
index of vi for i = 1, . . . , n−1 by 1, so multiplication by A2 shifts the index of vi for i = 1, . . . , n−2
by 2, and so on. This implies that

An−ivi = vn

for i = 1, . . . , n. Thus for each i = 1, . . . , n:

Anvi = AiAn−1vi = Aivn = Ai−1v1 = v1+i−1 = vi

as claimed.
Now, since v1, . . . ,vn are n linearly independent vectors in the n-dimensional space Rn, they

automatically space Rn. Thus if x ∈ Rn we have

x = c1v1 + · · ·+ cnvn

for some c1, . . . , cn ∈ R. Hence

Anx = c1A
nv1 + · · ·+ cnA

nvn = c1v1 + · · ·+ cnvn = x,

so An sends every xinRn to itself and thus An = I as desired.

3. Suppose A and B are n×n matrices such that AB = In. Show that A and B are each invertible.
(You cannot use the fact that if AB = In for square matrices, then BA = In automatically since
that fact relies on the claim given here. You also cannot use the fact that if AB is invertible, then
A and B are each invertible, since this also relies on the claim given here.) Hint: Show that B is
invertible first, using some aspect of the Amazingly Awesome Theorem.

Proof. Suppose x ∈ Rn satisfies Bx = 0. Then multiplying both sides by A on the left gives

ABx = A0 = 0.



Since AB = I this implies that x = 0, so the only solution to Bx = 0 is x = 0. Thus B is invertible
by the Amazingly Awesome Theorem. Then multiplying both sides of AB = I by B−1 on the right
gives

ABB−1 = IB−1, so A = B−1.

Hence A is invertible as well since it is the inverse of an invertible matrix.

4. Suppose V is a vector space over K and that U is a (linear) subspace of V . Suppose b ∈ V is
not in U , and define b+U to be the set of all vectors in V obtained by adding V to elements of U :

b+ U = {b+ u ∈ V | u ∈ U}.

Let w1, . . . , wk ∈ b + U and c1, . . . , ck ∈ K. Show that c1w1 + · · · + ckwk ∈ b + U if and only if
c1 + · · ·+ ck = 1. (You cannot take it for granted that b+ U is an affine subspace of V , since this
fact is a consequence of this problem.)

Be careful: the forward direction, namely that if c1w1+ · · ·+ckwk ∈ b+U then c1+ · · ·+ck = 1,
is not as obvious as it seems and requires some real thought.

Proof. Suppose c1w1 + · · ·+ ckwk ∈ b+ U . Write each wi as

wi = b+ ui for some ui ∈ U.

Then

c1w1 + · · ·+ ckwk = c1(b+ u1) + · · ·+ ck(b+ uk) = (c1 + · · ·+ ck)b+ (c1u1 + · · ·+ ckuk).

Since this is assumed to be in b+ U , we have

(c1 + · · ·+ ck)b+ (c1u1 + · · ·+ ckuk) = b+ u

for some u ∈ U . (The subtlety here is that at this point u is not necessarily the same as c1u1+ · · ·+
ckuk, so we can’t say right away that (c1 + · · ·+ ck)b is the same as b and hence that c1 + · · ·+ ck
equals 1. We need more work to get to this point.) Rewriting the expression above gives

(c1 + · · ·+ ck − 1)b = u− (c1u1 + · · ·+ ckuk).

Since U is a subspace of V , c1u1 + · · ·+ ckuk ∈ U since U is closed under linear combinations and
hence u − (c1u1 + · · · + ckuk) ∈ U as well. This then implies that (c1 + · · · + ck − 1)b ∈ U , so if
c1 + · · · + ck − 1 ∕= 0 this would give that b ∈ U after multiplying through by 1

c1+···+ck−1 . Since
b /∈ U , it must thus be the case that c1 + · · ·+ ck − 1 = 0, so c1 + · · ·+ ck = 1 as claimed.

Conversely suppose that c1 + · · ·+ ck = 1. Again write each wi as

wi = b+ ui for some ui ∈ U,

so that
c1w1 + · · ·+ ckwk = (c1 + · · ·+ ck)b+ (c1u1 + · · ·+ ckuk).

Since c1 + · · · + ck = 1, this becomes b + (c1u1 + · · · + ckuk), and since U is a subspace of V we
have c1u1 + · · ·+ ckuk since subspaces are closed under linear combinations. Thus

c1w1 + · · ·+ ckwk = b+ (c1u1 + · · ·+ ckuk)

is in b+ U as required.
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5. Let U be the subset of M2(C) consisting of all 2 × 2 complex matrices which equal their own
transpose:

U := {A ∈ M2(C) |AT = A}.

Show that U is a subspace of M2(C) over R, and find a basis for U over R. You can take it for
granted that (A + B)T = AT + BT and (cA)T = cAT , where c is a scalar. You do NOT have to
justify the fact that your claimed basis is actually a basis.

Solution. First, the tranpose of the zero matrix is itself, so 0 ∈ U . If A,B ∈ U , then AT = A and
BT = B, so

(A+B)T = AT +BT = A+B.

Thus A+B ∈ U , so U is closed under addition. Finally, if c ∈ R and A ∈ U , we have

(cA)T = cAT = cA

since AT = A. Thus cA ∈ U , so U is closed under scalar multiplication. We conclude that U is a
subspace of M2(C) over R as claimed.

In order for
#
a+ib c+id
p+iq s+it

$
to belong to U requires that

%
a+ ib p+ iq
c+ id s+ it

&
=

%
a+ ib c+ id
p+ iq s+ it

&
,

so p+ iq = c+ id. Thus an element of U can be written as

%
a+ ib c+ id
c+ id s+ it

&
= a

%
1 0
0 0

&
+ b

%
i 0
0 0

&
+ c

%
0 1
1 0

&

+ d

%
0 i
i 0

&
+ s

%
0 0
0 1

&
+ t

%
0 0

0 ∗ i

&
.

Hence the matrices
%
1 0
0 0

&
,

%
i 0
0 0

&
,

%
0 1
1 0

&
,

%
0 i
i 0

&
,

%
0 0
0 1

&
,

%
0 0
0 i

&

span U and since they are linearly independent over R, they form a basis for U .
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