Math 291-1: Midterm 2 Solutions
 Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) There is no 2×2 matrix A such that $A^{2} \neq I$ but $A^{4}=I$.
(b) There is no vector space over \mathbb{C} which has dimension 5 over \mathbb{R}.

Solution. (a) This is false. Let $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, which describes rotation by $\frac{\pi}{2}$. Then $A^{2}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ is not the identity but $A^{4}=\left(A^{2}\right)^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is.
(b) This is true: if V is n-dimensional over \mathbb{C}, then it is $2 n$-dimensional over \mathbb{R} so this dimension over \mathbb{R} can never be odd. (This uses the fact that if v_{1}, \ldots, v_{n} forms a basis for V over \mathbb{C}, then $v_{1}, i v_{1}, \ldots, v_{n}, i v_{n}$ forms a basis for V over \mathbb{R} as shown on a homework problem.
2. Suppose A is an $n \times n$ matrix and that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{v}_{2}, A \mathbf{v}_{2}=\mathbf{v}_{3}, \ldots, A \mathbf{v}_{n-1}=\mathbf{v}_{n}, \text { and } A \mathbf{v}_{n}=\mathbf{v}_{1}
$$

To be clear, A has the effect of sending each of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to the next vector in the list, except that \mathbf{v}_{n} is sent to \mathbf{v}_{1}. Show that $A^{n}=I$.

Proof. First we claim that $A^{n} \mathbf{v}_{i}=\mathbf{v}_{i}$ for each i. Indeed, note that multiplication by A increases the index of \mathbf{v}_{i} for $i=1, \ldots, n-1$ by 1 , so multiplication by A^{2} shifts the index of \mathbf{v}_{i} for $i=1, \ldots, n-2$ by 2 , and so on. This implies that

$$
A^{n-i} \mathbf{v}_{i}=\mathbf{v}_{n}
$$

for $i=1, \ldots, n$. Thus for each $i=1, \ldots, n$:

$$
A^{n} \mathbf{v}_{i}=A^{i} A^{n-1} \mathbf{v}_{i}=A^{i} \mathbf{v}_{n}=A^{i-1} \mathbf{v}_{1}=\mathbf{v}_{1+i-1}=\mathbf{v}_{i}
$$

as claimed.
Now, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are n linearly independent vectors in the n-dimensional space \mathbb{R}^{n}, they automatically space \mathbb{R}^{n}. Thus if $\mathbf{x} \in \mathbb{R}^{n}$ we have

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}
$$

for some $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Hence

$$
A^{n} \mathbf{x}=c_{1} A^{n} \mathbf{v}_{1}+\cdots+c_{n} A^{n} \mathbf{v}_{n}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{x}
$$

so A^{n} sends every xin \mathbb{R}^{n} to itself and thus $A^{n}=I$ as desired.
3. Suppose A and B are $n \times n$ matrices such that $A B=I_{n}$. Show that A and B are each invertible. (You cannot use the fact that if $A B=I_{n}$ for square matrices, then $B A=I_{n}$ automatically since that fact relies on the claim given here. You also cannot use the fact that if $A B$ is invertible, then A and B are each invertible, since this also relies on the claim given here.) Hint: Show that B is invertible first, using some aspect of the Amazingly Awesome Theorem.

Proof. Suppose $\mathbf{x} \in \mathbb{R}^{n}$ satisfies $B \mathbf{x}=\mathbf{0}$. Then multiplying both sides by A on the left gives

$$
A B \mathbf{x}=A \mathbf{0}=\mathbf{0}
$$

Since $A B=I$ this implies that $\mathbf{x}=\mathbf{0}$, so the only solution to $B \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. Thus B is invertible by the Amazingly Awesome Theorem. Then multiplying both sides of $A B=I$ by B^{-1} on the right gives

$$
A B B^{-1}=I B^{-1}, \text { so } A=B^{-1}
$$

Hence A is invertible as well since it is the inverse of an invertible matrix.
4. Suppose V is a vector space over \mathbb{K} and that U is a (linear) subspace of V. Suppose $b \in V$ is not in U, and define $b+U$ to be the set of all vectors in V obtained by adding V to elements of U :

$$
b+U=\{b+u \in V \mid u \in U\} .
$$

Let $w_{1}, \ldots, w_{k} \in b+U$ and $c_{1}, \ldots, c_{k} \in \mathbb{K}$. Show that $c_{1} w_{1}+\cdots+c_{k} w_{k} \in b+U$ if and only if $c_{1}+\cdots+c_{k}=1$. (You cannot take it for granted that $b+U$ is an affine subspace of V, since this fact is a consequence of this problem.)

Be careful: the forward direction, namely that if $c_{1} w_{1}+\cdots+c_{k} w_{k} \in b+U$ then $c_{1}+\cdots+c_{k}=1$, is not as obvious as it seems and requires some real thought.

Proof. Suppose $c_{1} w_{1}+\cdots+c_{k} w_{k} \in b+U$. Write each w_{i} as

$$
w_{i}=b+u_{i} \text { for some } u_{i} \in U .
$$

Then

$$
c_{1} w_{1}+\cdots+c_{k} w_{k}=c_{1}\left(b+u_{1}\right)+\cdots+c_{k}\left(b+u_{k}\right)=\left(c_{1}+\cdots+c_{k}\right) b+\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right) .
$$

Since this is assumed to be in $b+U$, we have

$$
\left(c_{1}+\cdots+c_{k}\right) b+\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right)=b+u
$$

for some $u \in U$. (The subtlety here is that at this point u is not necessarily the same as $c_{1} u_{1}+\cdots+$ $c_{k} u_{k}$, so we can't say right away that $\left(c_{1}+\cdots+c_{k}\right) b$ is the same as b and hence that $c_{1}+\cdots+c_{k}$ equals 1 . We need more work to get to this point.) Rewriting the expression above gives

$$
\left(c_{1}+\cdots+c_{k}-1\right) b=u-\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right) .
$$

Since U is a subspace of $V, c_{1} u_{1}+\cdots+c_{k} u_{k} \in U$ since U is closed under linear combinations and hence $u-\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right) \in U$ as well. This then implies that $\left(c_{1}+\cdots+c_{k}-1\right) b \in U$, so if $c_{1}+\cdots+c_{k}-1 \neq 0$ this would give that $b \in U$ after multiplying through by $\frac{1}{c_{1}+\cdots+c_{k}-1}$. Since $b \notin U$, it must thus be the case that $c_{1}+\cdots+c_{k}-1=0$, so $c_{1}+\cdots+c_{k}=1$ as claimed.

Conversely suppose that $c_{1}+\cdots+c_{k}=1$. Again write each w_{i} as

$$
w_{i}=b+u_{i} \text { for some } u_{i} \in U,
$$

so that

$$
c_{1} w_{1}+\cdots+c_{k} w_{k}=\left(c_{1}+\cdots+c_{k}\right) b+\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right) .
$$

Since $c_{1}+\cdots+c_{k}=1$, this becomes $b+\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right)$, and since U is a subspace of V we have $c_{1} u_{1}+\cdots+c_{k} u_{k}$ since subspaces are closed under linear combinations. Thus

$$
c_{1} w_{1}+\cdots+c_{k} w_{k}=b+\left(c_{1} u_{1}+\cdots+c_{k} u_{k}\right)
$$

is in $b+U$ as required.
5. Let U be the subset of $M_{2}(\mathbb{C})$ consisting of all 2×2 complex matrices which equal their own transpose:

$$
U:=\left\{A \in M_{2}(\mathbb{C}) \mid A^{T}=A\right\} .
$$

Show that U is a subspace of $M_{2}(\mathbb{C})$ over \mathbb{R}, and find a basis for U over \mathbb{R}. You can take it for granted that $(A+B)^{T}=A^{T}+B^{T}$ and $(c A)^{T}=c A^{T}$, where c is a scalar. You do NOT have to justify the fact that your claimed basis is actually a basis.

Solution. First, the tranpose of the zero matrix is itself, so $0 \in U$. If $A, B \in U$, then $A^{T}=A$ and $B^{T}=B$, so

$$
(A+B)^{T}=A^{T}+B^{T}=A+B .
$$

Thus $A+B \in U$, so U is closed under addition. Finally, if $c \in \mathbb{R}$ and $A \in U$, we have

$$
(c A)^{T}=c A^{T}=c A
$$

since $A^{T}=A$. Thus $c A \in U$, so U is closed under scalar multiplication. We conclude that U is a subspace of $M_{2}(\mathbb{C})$ over \mathbb{R} as claimed.

In order for $\left[\begin{array}{cc}a+i b & c+i d \\ p+i q & s+i t\end{array}\right]$ to belong to U requires that

$$
\left[\begin{array}{cc}
a+i b & p+i q \\
c+i d & s+i t
\end{array}\right]=\left[\begin{array}{cc}
a+i b & c+i d \\
p+i q & s+i t
\end{array}\right],
$$

so $p+i q=c+i d$. Thus an element of U can be written as

$$
\begin{aligned}
{\left[\begin{array}{cc}
a+i b & c+i d \\
c+i d & s+i t
\end{array}\right] } & =a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& +d\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]+s\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+t\left[\begin{array}{cc}
0 & 0 \\
0 * i &
\end{array}\right] .
\end{aligned}
$$

Hence the matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
i & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & i
\end{array}\right]
$$

span U and since they are linearly independent over \mathbb{R}, they form a basis for U.

