
Math 291-3: Midterm 2 Solutions
Northwestern University, Spring 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) Any C1 closed 1-form on the region obtained by removing (1, 1) from R2 is exact.
(b) If f : R3 → R is C2, then the 2-form(
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is closed on R3.

Solution. (a) This is false. The 1-form

ω =
−(y − 1) dx+ (x− 1) dy

(x− 1)2 + (y − 1)2

is closed on the given region, as a direct computation shows. However, ω is not exact since its
integral over a circle centered at (1, 1) will not be zero, as can be seen using the parametric
equations x = 1 + cos t, y = 1 + sin t.

(b) This is true. The exterior derivative of the given 2-form is:
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Since f is C2, all terms in this coefficient cancel out, so the given 2-form is closed.

2. Suppose S is a smooth C1 surface with parametrization

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ E

where E is a subset of R2, and let c(t) = (u(t), v(t)), a ≤ t ≤ b be a parametrization of a smooth
C1 curve in E. The composition X ◦ c : [a, b]→ R3 then describes a smooth C1 curve on S. Show
that for any t ∈ [a, b],

(X ◦ c)′(t) · (Xu ×Xv)(u(t), v(t)) = 0.

Hint: Show that (X ◦ c)′(t) is a linear combination of Xu(u(t), v(t)) and Xv(u(t), v(t)). (The
point is that (X ◦ c)′(t) gives a vector tangent to S at the point X(u(t), v(t)), so this verifies that
(Xu ×Xv)(u(t), v(t)) is orthogonal to every vector which is tangent to S at X(u(t), v(t)), which is
why Xu ×Xv indeed gives vectors normal to S.)



Proof. We have
(X ◦ c)(t) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))).

The chain rule gives
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Thus
(X ◦ c)′(t) · (Xu ×Xv) = u′(t)Xu · (Xu ×Xv) + v′(t)Xv · (Xu ×Xv).

The cross product Xu×Xv is orthogonal to both Xu and Xv, so both dot products above are zero
and hence (X ◦ c)′(t) · (Xu ×Xv)(u(t), v(t)) = 0 as claimed.

3. Suppose F,G are two C1 vector fields on R3 which are orthogonal at every point, meaning

F(p) ·G(p) = 0 for all p ∈ R3.

If C is a curve lying on a flow line of G, determine the value of
∫
C F · ds.

Proof. Let x(t), a ≤ tleb be a parametrization of C. Then∫
C
F · ds =

∫ b

a
F(x(t)) · x′(t) dt.

Since C lies on a flow line of G, x′(t) = G(x(t)), so the integral above is∫ b

a
F(x(t)) ·G(x(t)) dt.

Since F and G are orthogonal at every point, the integrand in the integral above is zero, and hence
the line integral in question has the value zero.

4. Compute ∫
C

(2xy + yz) dx+ (x2 + xz − z − 2yz3) dy + (y + xy − 3y2z2) dz

where C is the intersection of the plane y = z with the cylinder x2 + z2 = 1, oriented counterclock-
wise when viewed from the positive z-axis.

Solution. We can write the given 1-form as

d(x2y + xyz − y2z2)− z dy + y dz.

Thus the given integral is ∫
C
d(x2y + xyz − y2z2) +

∫
C
−z dy + y dz.
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Since C is closed, the first integral above is zero. To compute the second, we parametrize the given
curve as

x(t) = (cos t, sin t, sin t), 0 ≤ t ≤ 2π.

Then ∫
C
−z dy + y dz =

∫ 2π

0
(− sin t cos t+ sin t cos t) dt =

∫ 2π

0
0 dt = 0.

Thus the integral in question has the value zero.

5. Suppose C is a smooth, C1 curve in R2 which starts at (4, 0), ends at (−3, 0), and otherwise
lies fully above the x-axis. Show that ∫

C

−y dx+ x dy

x2 + y2
= π.

Solution. Pick r > 0 small enough to guarantee that the circle of radius r centered at (0, 0) lies
fully below the curve C. Let C1 be the curve consisting of the line segment from (−3, 0) to (−r, 0),
followed by the top half of the circle of radius r centered at (0, 0), followed by the line segment from
(r, 0) to (4, 0). Then C+C1 is the boundary of the region D lying between these two curves. Since
the given 1-form is C1 throughout D (note that D does not include the origin), Green’s Theorem
applies to give ∫

C+C1
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Now, this final integral beaks up into∫
first line segment
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+

∫
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+

∫
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.

Over the first line segment, y = 0 is constant, so dy = 0 on this segment and hence the first integral
is zero. Over the final segment, again y = 0 is constant, so dy = 0 and hence the third integral
above is zero. To compute the middle integral, we parametrize the semicircle using

x(t) = (r cos t, r sin t), 0 ≤ t ≤ π.

Then ∫
−semicircle

−y dx+ x dy

x2 + y2
=

∫ π

0

(
r2 sin2 t+ r2 cos2 t

r2

)
dt =

∫ π

0
dt = π.

Hence ∫
C

−y dx+ x dy

x2 + y2
= π

as claimed.
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