Math 291-3: Midterm 2 Northwestern University, Spring 2016

Name: _

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) Any C^1 closed 1-form on the region obtained by removing (1,1) from \mathbb{R}^2 is exact.
- (b) If $f : \mathbb{R}^3 \to \mathbb{R}$ is C^2 , then the 2-form

$$\left(\frac{\partial f}{\partial y} - \frac{\partial f}{\partial z}\right) \, dy \wedge dz + \left(\frac{\partial f}{\partial z} - \frac{\partial f}{\partial x}\right) \, dz \wedge dx + \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) \, dx \wedge dy$$

is closed on \mathbb{R}^3 .

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose S is a smooth C^1 surface with parametrization

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), z(u,v)), \ (u,v) \in E$$

where E is a subset of \mathbb{R}^2 , and let $\mathbf{c}(t) = (u(t), v(t)), \ a \leq t \leq b$ be a parametrization of a smooth C^1 curve in E. The composition $\mathbf{X} \circ \mathbf{c} : [a, b] \to \mathbb{R}^3$ then describes a smooth C^1 curve on S. Show that for any $t \in [a, b]$,

$$(\mathbf{X} \circ \mathbf{c})'(t) \cdot (\mathbf{X}_u \times \mathbf{X}_v)(u(t), v(t)) = 0.$$

Hint: Show that $(\mathbf{X} \circ \mathbf{c})'(t)$ is a linear combination of $\mathbf{X}_u(u(t), v(t))$ and $\mathbf{X}_v(u(t), v(t))$. (The point is that $(\mathbf{X} \circ \mathbf{c})'(t)$ gives a vector tangent to S at the point $\mathbf{X}(u(t), v(t))$, so this verifies that $(\mathbf{X}_u \times \mathbf{X}_v)(u(t), v(t))$ is orthogonal to every vector which is tangent to S at $\mathbf{X}(u(t), v(t))$, which is why $\mathbf{X}_u \times \mathbf{X}_v$ indeed gives vectors normal to S.)

3. (10 points) Suppose \mathbf{F}, \mathbf{G} are two C^1 vector fields on \mathbb{R}^3 which are orthogonal at every point, meaning

$$\mathbf{F}(\mathbf{p}) \cdot \mathbf{G}(\mathbf{p}) = 0$$
 for all $\mathbf{p} \in \mathbb{R}^3$.

If C is a curve lying on a flow line of **G**, determine the value of $\int_C \mathbf{F} \cdot d\mathbf{s}$.

4. (10 points) Compute

$$\int_C (2xy + yz) \, dx + (x^2 + xz - z - 2yz^3) \, dy + (y + xy - 3y^2z^2) \, dz$$

where C is the intersection of the plane y = z with the cylinder $x^2 + z^2 = 1$, oriented counterclockwise when viewed from the positive z-axis. 5. (10 points) Suppose C is a smooth, C^1 curve in \mathbb{R}^2 which starts at (4,0), ends at (-3,0), and otherwise lies fully above the x-axis. Show that

$$\int_C \frac{-y\,dx + x\,dy}{x^2 + y^2} = \pi.$$