
Math 291-1: Intensive Linear Algebra & Multivariable Calculus
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for Math 291-1, the first quarter
of “MENU: Intensive Linear Algebra & Multivariable Calculus”, taught by the author at Northwest-
ern University. The book used as a reference is the 5th edition of Linear Algebra with Applications
by Bretscher. Watch out for typos! Comments and suggestions are welcome.

These notes will focus on material covered in Math 291 which is not normally covered in Math
290, and should thus be used in conjunction with my notes for Math 290, which are available at
http://www.math.northwestern.edu/∼scanez/courses/290/notes.php.

Contents

Lecture 1: Introduction 2

Lecture 2: Mathematical Induction 4

Lecture 3: Vectors 8

Lecture 4: More on Vectors 10

Lecture 5: Linear Combinations 16

Lecture 6: Linear Systems 20

Lecture 7: Matrices and Row Reduction 23

Lecture 8: More on Matrices and Linear Systems 27

Lecture 9: Reduced Echelon Form 29

Lecture 10: Span and Linear Independence 32

Lecture 11: Solutions of Linear Systems 36

Lecture 12: Linear Transformations 39

Lecture 13: More on Linear Transformations 41

Lecture 14: Yet More on Linear Transformations 46

Lecture 15: Products 52

Lecture 16: Inverses 55

Lecture 17: More on Invertibility 58

Lecture 18: Vector Spaces 61

Lecture 19: More on Vector Spaces 63

Lecture 20: Subspaces 67

Lecture 21: More on Subspaces 70

Lecture 22: Bases 73

Lecture 23: Dimension 78

Lecture 24: More on Bases and Dimension 81

Lecture 25: Linear Transformations Redux 83

Lecture 26: Images and Kernels 86

Lecture 27: Isomorphisms 90

http://www.math.northwestern.edu/~scanez/courses/290/notes.php

Lecture 28: Rank-Nullity Theorem 93

Lecture 29: More on Rank-Nullity 97

Lecture 30: Coordinates 100

Lecture 31: More on Coordinates 105

Lecture 32: Change of Bases 106

Lecture 1: Introduction

Linear algebra is the study of “linear” things. In the simplest setting, “linear” things are those
which can be described using equations where variables appear to only the first power; for instance,
lines and planes both fall into this category. This does not seem all that interesting on its own, but
this course is all about convincing you that it is incredibly interesting, mainly due to the fact that
there are so many different types of questions which can be phrased in terms of “linear” things.

One of the key facts we outlined on the first day is that any system of linear equations, no matter
the number of variables nor the number of equations, has either zero, exactly one, or infinitely many
solutions. This makes sense geometrically when we interpret solutions of linear systems in terms of
intersecting lines, planes, or analogous higher-dimensional objects (which we can’t really picture),
but we can show it algebraically too. Here was the argument for the simple case of a system of two
equations in two unknowns:

Claim. If the system of linear equations:

ax+ by = c

dx+ fy = g

where x and y are the variables and a, b, c, d, f, g are fixed numbers, has at least two solutions, then
it has infinitely many.

Proof. Suppose that (x1, y1) and (x2, y2) are two distinct solutions of the given system, so that

ax1 + by1 = c

dx1 + fy1 = g
and

ax2 + by2 = c

dx2 + fy2 = g.

We claim that then (x, y) =
󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
is also a solution and that it is different from

both (x1, y1) and (x2, y2). First, to verify that it is a solution, we substitute in for x and y:

a

󰀕
1

2
x1 +

1

2
x2

󰀖
+ b

󰀕
1

2
y1 +

1

2
y2

󰀖
=

1

2
(ax1 + by1) +

1

2
(ax2 + by2) =

1

2
c+

1

2
c = c,

so the first equation is satisfied, and

d

󰀕
1

2
x1 +

1

2
x2

󰀖
+ f

󰀕
1

2
y1 +

1

2
y2

󰀖
=

1

2
(dx1 + fy1) +

1

2
(dx2 + fy2) =

1

2
g +

1

2
g = g,

so the second is as well. Hence (x, y) =
󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
is a solution of the given linear

system as claimed.
To see that this solution is different from both (x1, y1) and (x2, y2), suppose instead that󰀃

1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
was the same as (x1, y1). Then we would have

1

2
x1 +

1

2
x2 = x1 and

1

2
y1 +

1

2
y2 = y1.

2

But the first equation gives 1
2x1 = 1

2x2, so x1 = x2, and the second gives 1
2y1 = 1

2y2, so y1 = y2.
Thus, in order for

󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
to be the same as (x1, y1), it would have to be true that

(x1, y1) = (x2, y2), which is not true since we are assuming that (x1, y1) and (x2, y2) are distinct
solutions of the given system. A similar computation shows that

󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
is different

from (x2, y2), so
󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
is indeed a solution of the given system distinct from the

two we started with.
Now, repeating the same argument to the solutions (x1, y1) and

󰀃
1
2x1 +

1
2x2,

1
2y1 +

1
2y2

󰀄
will

produce a fourth solution, and repeating the argument with (x1, y1) and this fourth solution will
give a fifth, and so on. Thus we end up with infinitely many solutions.

Exercise. More generally, with the same setup as above, what types of coefficients m and n will
result in

(mx1 + nx2,my1 + ny2)

being a solution of the same system?

A similar idea works with larger linear systems, but the algebra gets messier to write out in
detail. Later we will interpret this question in terms of so-called linear transformations, where we
can give a simpler, unified answer as to why this works in general.

We also saw that something similar happens for certain so-called systems of differential equa-
tions, which (hopefully) suggests that there is some connection between these topics. In particular,
say we have the following system of differential equations:

x′1 = 10x1 + 8x2 − 2

x′2 = x1 − 3x2 + 4.

Recall that these equations characterize functions x1(t) and x2(t) with the property that the deriva-
tive of x1 is 10 times x1 itself plus 8 times x2 minutes 2, and similarly the derivative of x2 satisfies
the requirement of the second equation. To solve this system means to find all pairs of functions
x1(t), x2(t) satisfying both equations simultaneously. (Of course, it is not assumed coming into this
course that you know what differential equations are nor how to solve them—this example is only
meant to illustrate a connection between questions concerning solutions of differential equations
and questions concerning solutions of linear systems. We’ll learn more about differential equations
at some point.)

Claim. If x1(t) = f1(t), x2(t) = g1(t) and x1(t) = f2(t), x2(t) = g2(t) are both solutions of the
above system of differential equations, then

x1(t) =
1

2
f1(t) +

1

2
f2(t), x2(t) =

1

2
g1(t) +

1

2
g2(t)

is also a solution, and it is distinct from the two we started with.

Proof. To say that f1, g1 is a solution of the given system means that their derivatives satisfy

f ′
1 = 10f1 + 8g1 − 2

g′1 = f1 − 3g1 + 4

and similarly saying that f2, g2 is a solution means

f ′
2 = 10f2 + 8g2 − 2

3

g′2 = f2 − 3g2 + 4.

To check that

x1 =
1

2
f1 +

1

2
f2, x2 =

1

2
g1 +

1

2
g2

is also a solution, we simply verify that substituting in the first function in for x1 and the second
in for x2 in our system results in true statements. We have:

10

󰀕
1

2
f1 +

1

2
f2

󰀖
+ 8

󰀕
1

2
g1 +

1

2
g2

󰀖
− 2 =

1

2
(10f1 + 8g1 − 2) +

1

2
(10f2 + 8g2 − 2)

=
1

2
f ′
1 +

1

2
f ′
2

=

󰀕
1

2
f1 +

1

2
f2

󰀖′
,

so x1 =
1
2f1 +

1
2f2, x2 =

1
2g1 +

1
2g2 satisfies the first of our differential equations. Similarly:

󰀕
1

2
f1 +

1

2
f2

󰀖
− 3

󰀕
1

2
g1 +

1

2
g2

󰀖
+ 4 =

1

2
(f1 − 3g1 + 4) +

1

2
(f2 − 3g2 + 4)

=
1

2
g′1 +

1

2
g′2

=

󰀕
1

2
g1 +

1

2
g2

󰀖′
,

so the second differential equation is satisfied as well. Thus

x1 =
1

2
f1 +

1

2
f2, x2 =

1

2
g1 +

1

2
g2

is indeed also a solution of the given system of differential equations.
The same reasoning used in the previous claim to show that the newly obtained solution was

different from the previous ones also applies here to show that this newly obtained solution is
different from the ones with which we started.

As in the previous claim about intersecting lines, it follows that if the given system of differential
equations has at least two solutions, it must have infinitely many.

Is it a coincidence that solutions of this and other systems of differential equations exhibit the
same type of behavior as do solutions of linear systems? Of course not, or else we wouldn’t be
mentioning it here. Indeed, when phrased in the right terms, we will see that we are really asking
the same question here. The setting of vector spaces and linear transformations provides the unified
framework from which to approach the topics we’ve looked at here and so many more. It will be a
glorious journey for us all!

Lecture 2: Mathematical Induction

Warm-Up. Consider the equation of a line

ax+ by = c

where a, b, c are fixed numbers. Suppose that [x1
y1] and [x2

y2] are two points on this line. We show
that if c ∕= 0, then

󰀅
mx1+nx2
my1+ny2

󰀆
is also on this line if and only if n = 1 − m; while if c = 0, then󰀅

mx1+nx2
my1+ny2

󰀆
is on this line for any values of m and n.

4

To say that [x1
y1] and [x2

y2] are on the given line means that

ax1 + by1 = c and ax2 + by2 = c.

We compute:

a(mx1 + nx2) + b(my1 + ny2) = m(ax1 + by1) + n(ax2 + by2) = mc+ nc.

Thus,
󰀅
mx1+nx2
my1+ny2

󰀆
satisfies the equation of the same line if and only if

mc+ nc = c, or equivalently nc = (1−m)c.

If c ∕= 0, after dividing this equation through by c we can see that it holds if and only if n = 1−m
as claimed, while if c = 0 this equation holds for any values of m and n, as claimed.

Question to think about. In the above scenario, why is it that in the c = 0 case, any values of
m and n work, while in the c ∕= 0 case only those values of m and n for which m + n = 1 work?
What property of lines with c = 0 vs lines with c ∕= 0 does this reflect?

Exercise. In the case where c ∕= 0, is it true that every point on the line ax + by = c above is of

the form
󰁫
mx1+(1−m)x2

my1+(1−m)y2

󰁬
, where [x1

y1] and [x2
y2] are the two points we started with?

Induction. Induction is a technique for proving statements of the form: “For any positive integer
n past some value, P (n) is true”, where P (n) is whatever formula/inequality/other depending
on n we’re interested in. For us, induction is something we’ll make good use of when justifying
many things in linear algebra, but it also serves to set the tone of the course in that it is a good
introduction to proof-writing in general. The underlying core behind induction is the idea that we
can use known results for certain values of n to justify those same results for larger values of n,
thereby deriving new information from old.

To prove a statement of the form “For any positive integer n ≥ 1, P (n) is true”, we proceed as
follows:

• (Base case) First we verify that the claim is true in the base case n = 1; that is, we verify
that P (1) is true,

• (Induction step) Next we assume that the claim we’re looking at is true for some n = k ≥ 1,
and use this to show that the claim is then also true for n = k + 1; that is, we show that
if P (k) is true for some k ≥ 1, then P (k + 1) is also true. (The statement P (k) which we
assume to be true in this step is usually referred to as the induction hypothesis.)

If we can carry out these two steps, the conclusion is that P (n) is in fact true for all n ≥ 1 as
claimed. This is the basic format, but we’ll see that there are modifications we can make, such as
when the base case is something other than n = 1.

Why does induction work? How we do know that carrying out the two steps in the induction
procedure indeed justifies that the claim we’re looking at is true for all n? Here is the basic idea,
with the key point being that the induction step guarantees that if we know P (k) to be true, then
we automatically get that P (k + 1) is true.

By the base case, we know that P (1) is true. Applying the induction step to this then implies
that P (2) is true. But now that we know P (2) is true, applying the induction step to this instead
(i.e. applying the induction step to k = 2) implies that P (3) is true. Applying the induction step

5

to P (3) now implies that P (4) is true, and so on. This is often described as a “domino-like” effect,
where the induction step “knocks down” the next domino, one at a time. In the end all dominos
will be knocked down, so P (n) is true for all n.

Exercise. If the above description as to why induction works is a bit too “hand-wavy” for you
(and perhaps it should be), rest assured that we can actually prove that induction works! That is,
suppose that for each n ≥ 1, P (n) is some statement. Assume further that we know P (1) to be
true and we know that if P (k) is true for some k ≥ 1, then P (k+ 1) is true. Prove that then P (n)
must be true for all n ≥ 1. Here is a hint: if we assume instead that P (n) wasn’t true for all n ≥ 1,
then there would have to be a smallest value of n for which P (n) wasn’t true; if we call this value
M , what can we say about P (M − 1)?

Example 1. Let’s see induction in action. We show that if x ∕= 1 and n ≥ 1, then

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
.

This is a well-known formula, and in some sense we don’t really need induction to justify it, since
it can also be justified by expanding the product

(1− x)(1 + x+ x2 + · · ·+ xn).

However, we’ll approach it using induction here. The statement P (n) in this case is the equality
stated above.

First, since

1 + x =
1− x2

1− x
because 1− x2 = (1− x)(1 + x),

the claimed equality is true for the base case n = 1. Now, suppose that

1 + x+ x2 + · · ·+ xk =
1− xk+1

1− x
for some k ≥ 1.

(In other words, assume that P (k) is true for some k—this is our induction hypothesis.) We then
want to show that the claimed equality holds for n = k + 1 as well; that is, we want to show that

1 + x+ x2 + · · ·+ xk+1 =
1− xk+2

1− x
.

The key point, as with any induction procedure, is to figure out how to use the induction
hypothesis that the formula is true for n = k to justify that it holds for the next larger value
n = k+1. In this case, the observation needed is that the left-hand side of the equality we’re trying
to justify in fact includes among its terms the left hand side of the equality we’re assuming to be
true in our induction hypothesis. Indeed, the term right before xk+1 is xk, so if we think of the
given sum as

1 + x+ x2 + · · ·+ xk+1 = (1 + x+ · · ·+ xk) + xk+1,

we are able to use our induction hypothesis to replace the term in parentheses by 1−xk+1

1−x . All that
will remain then is some algebra.

Here are the final details. We have:

1 + x+ x2 + · · ·+ xk+1 = (1 + x+ · · ·+ xk) + xk+1

6

=
1− xk+1

1− x
+ xk+1

=
1− xk+1 + xk+1(1− x)

1− x

=
1− xk+2

1− x
,

where in the second step we used the induction hypothesis and in the third we added fractions
using a common denominator. This final equality is precisely the formula we’re looking at when
n = k + 1, so we have shown that P (k) being true implies that P (k + 1) is true. By induction, we
conclude that our claimed equality in fact holds for all n ≥ 1.

Example 2. Justifying equalities involving positive integers is a common use of induction, but the
technique of induction extends beyond that. Here we justify an inequality:

for all n ≥ 4, n2 > 2n+ 3.

Note that the given inequality is not true for n = 1, 2, 3, which is why we are only considering
values of n which are 4 or larger. The only change to the induction procedure is that our base case
changes from n = 1 to n = 4, and so in the end our conclusion will only hold for n ≥ 4.

Since 42 > 2(4) + 3, the inequality holds for the base case n = 4. Suppose for the induction
hypothesis that k2 > 2k+3 for some k ≥ 4. We want to show that this implies (k+1)2 > 2(k+1)+3.
Since k2 > 2k + 3, we have

k2 + 2k + 1 > 2k + 3 + 2k + 1

since adding 2k + 1 to both sides does not alter the inequality. The left-hand side is now (k + 1)2,
so we have (k + 1)2 > 4k + 4. Since k ≥ 4, 2k ≥ 1 so

4k + 4 = 2k + 2k + 4 ≥ 2k + 5,

and hence
(k + 1)2 > 4k + 4 ≥ 2k + 5 = 2(k + 1) + 3,

as we wanted. We conclude by induction that n2 > 2n+ 3 for all n ≥ 4.

Complex numbers. We’ll be using complex numbers from time to time, so here is a very quick
crash course. We’ll talk about other properties of complex numbers as they’re needed.

A complex number is an expression of the form a+ ib, where a and b are both real numbers and
the symbol i satisfies i2 = −1. (The point is that you should think of i as something like

√
−1:√

−1 does not exist as a real number—since no real number x satisfies x2 = −1—so we introduce a
new symbol which plays this role.) Addition of complex numbers work as you would expect it to:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

where we group together the ib and id terms and factor out i, and multiplication of complex
numbers does as well, as long as you remember that i2 = −1:

(a+ ib)(c+ id) = ac+ iad+ ibc+ bdi2 = (ac− bd) + i(ad+ bc).

For a complex number a + ib, its complex conjugate is the complex number a − ib obtained by
changing the sign of the i term, and is denoted by a+ ib:

a+ ib = a− ib.

7

As stated above, other properties of complex numbers will be introduced as needed.

Example 3. Here is one final induction example, this time justifying a property of complex
numbers. The claim is that for any complex numbers z1, . . . , zn, the conjugate of their sum is the
sum of their conjugates:

z1 + · · ·+ zn = z1 + · · ·+ zn.

The induction here occurs on n, the number of complex numbers we are considering. Note that for
n = 1 this says z1 = z1, which isn’t really saying much, so the base case should really be n = 2.

Suppose that z1 = a+ ib and z2 = c+ id with a, b, c, d all real. Then

z1 + z2 = (a+ ib) + (c+ id) = (a+ c) + i(b+ d),

so
z1 + z2 = (a+ c)− i(b+ d) = (a− ib) + (c− id) = z1 + z2.

Hence the claimed equality holds for the base case n = 2. Suppose now that the claimed equality
holds for any k complex numbers, where k ≥ 2, and suppose that z1, . . . , zk+1 is a list of k + 1
complex numbers. By thinking of the sum z1 + · · · + zk+1 as (z1 + · · · + zk) + zk+1, the base case
gives

z1 + · · ·+ zk+1 = (z1 + · · ·+ zk) + zk+1 = z1 + · · ·+ zk + zk+1.

To be clear, we are applying the base case to the two complex numbers z1 + · · · + zk and zk+1.
Now, by the induction hypothesis

z1 + · · ·+ zk = z1 + · · ·+ zk,

so we get
z1 + · · ·+ zk+1 = z1 + · · ·+ zk + zk+1 = z1 + · · ·+ zk + zk+1

as desired. We conclude by induction that the claimed equality holds for all n ≥ 2.

Remark. Note the subtle difference between this final example and, say, the first example. In this
example, the induction step requires applying both the induction hypothesis and the base case,
whereas in the first example the base case was no where to be found in the induction step. It will
often be the case that carrying out an induction successfully requires using the base case and/or
other special cases together with the induction hypothesis as part of the induction step.

Lecture 3: Vectors

Warm-Up. We show that for any n complex numbers z1, . . . , zn,

|z1z2 · · · zn| = |z1||z2| · · · |zn|

where the absolute value |a + ib| of a complex number is defined to be |a + ib| :=
√
a2 + b2. (The

notation “:=” is used to indicate that the left-hand side is being defined via the right-hand side.)
Geometrically, if you associate to a complex numbers z = a+ ib the point (a, b) in R2, the absolute
value of z gives the distance from (a, b) to the origin.

We proceed by induction. First suppose that z1 = a + ib and z2 = c + id are two complex
numbers. Then

z1z2 = (a+ ib)(c+ id) = (ac− bd) + (ad+ bc)i,

8

so

|z1z2| =
󰁳

(ac− bd)2 + (ad+ bc)2

=
󰁳

a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2

=
󰁳

a2c2 + b2d2 + a2d2 + b2c2.

But also,

|z1||z2| =
󰁳

a2 + b2
󰁳

c2 + d2 =
󰁳

(a2 + b2)(c2 + d2) =
󰁳

a2c2 + a2d2 + b2c2 + b2d2.

Thus we see that |z1z2| = |z1||z2|, so the claimed equality holds for the base case n = 2.
Suppose now that the claimed equality holds for any k complex numbers, and let z1, . . . , zk+1

denote k + 1 complex numbers. Then

|z1 · · · zk+1| = |(z1 · · · zk)zk+1|
= |z1 · · · zk||zk+1|
= |z1| · · · |zk||zk+1|,

where the second line follows by applying the base case to the complex numbers z1 · · · zk and zk+1,
and the third line by the induction hypothesis that |z1 · · · zk| = |z1| · · · |zk|. Hence, assuming that
the claimed equality holds for k complex numbers implies it holds for k + 1 complex numbers, so
by induction we conclude that it holds for any n complex numbers for any n ≥ 2.

Remark. Of course, if we write express each complex number above concretely as

z1 = a1 + ib1, . . . , zn = an + ibn,

we can try to compute out the expressions

|z1z2 · · · zn| = |(a1 + ib1)(a2 + ib2) · · · (an + ibn)|

and

|z1||z2| · · · |zn| =
󰁴

a21 + b21

󰁴
a22 + b22 · · ·

󰁳
a2n + b2n

concretely to see if they are equal, but the point is that this will involve some incredibly messy
algebra. Instead, it is much cleaner to work out this algebra only in the simplest case where we
have two terms, and then let induction take care of the general scenario.

Exercise. To avoid the impression that induction only applies to proving concrete formulas or
inequalities—as in all examples we’ve seen so far—here is a fun induction problem we looked at
in class, which focuses more on using a procedure which works in a smaller setting to build up a
procedure which works in a larger setting. For n ≥ 1, take a 2n × 2n sized chessboard and remove
one square. Show that what remains can be covered using “L”-shaped pieces consisting of three
squares, so that you get when you glue three squares together into an “L” shape.

Exercise. Here is another fun induction problem, which we didn’t look at in class, but also focuses
on using induction to “do something” rather than using it to prove some formula. A polygon is
called convex if it has the property that for any two points inside of it, the entire line segment
connecting these two points remains inside the polygon. Show that for any n ≥ 3, any convex
polygon with n vertices can be dividing up into n− 2 triangles.

9

Vectors. Rather than spell out all of the material about vectors which we discussed in class, I’ll
point out that it (and more) can all be found in Appendix A of the book, which you should look at
if vectors are an unfamiliar concept to you. The key points are understanding the geometric and
algebric descriptions of vectors, vector addition, and scalar multiplication. Next time we’ll focus
more on understanding why various properties of vectors are actually true, as a way to further
introduce ourselves to the notion of “proving” things.

Adding vectors geometrically. There is, however, one fact not clarified in the book, which
we did look at in class. The question is why the geometric interpretation of vector addition via
parallelograms gives the same answer as the algebraic interpretation in terms of adding together
corresponding components.

Here is the setup. Let [ab] and [cd] be two vectors (or points) in R2. Algebraically their sum is
the vector

󰀅
a+c
b+d

󰀆
, and the claim is that this sum is indeed the vector obtained by viewing [ab] and

[cd] (now thought of as arrows) as the sides of a parallelogram and then drawing the arrow which
extends from (0, 0) to the opposite corner of this parallelogram:

To guarantee this we have to know that the quadrilateral with vertices at
󰀗
0
0

󰀘
,

󰀗
a
b

󰀘
,

󰀗
c
d

󰀘
, and

󰀗
a+ c
b+ d

󰀘

is in fact a parallelogram. Now, one side of this quadrilateral is the line segment between [00] and
[ab], which has length

√
a2 + b2, and the opposite side is the line segment between [cd] and

󰀅
a+c
b+d

󰀆
,

which has length 󰁳
(a+ c− c)2 + (b+ d− d)2 =

󰁳
a2 + b2,

so these two opposite sides have length. Similarly, the remaining sides are the line segment between
[00] and [cd] and the line segment between [ab] and

󰀅
a+c
b+d

󰀆
, which have lengths

󰁳
c2 + d2 and

󰁳
(a+ c− a)2 + (b+ d− b)2 =

󰁳
c2 + d2

respectively. Since opposite sides of this quadrilateral have the same length, it is actually a par-
allelogram, so the algebraic addition of vectors indeed corresponds to the geometric addition as
claimed.

Lecture 4: More on Vectors

Warm-Up 1. We verify the associative property of vector addition:

(x+ y) + z = x+ (y + z) for any x,y, z ∈ Rn.

10

(Recall that Rn denotes the space of vectors with n coordinates, and the symbol “∈” means “in”,
so x,y, z ∈ Rn means that x,y, z are vectors in Rn.)

First we justify this algebraically. Suppose that concretely

x =

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸 , y =

󰀵

󰀹󰀷
y1
...
yn

󰀶

󰀺󰀸 , z =

󰀵

󰀹󰀷
z1
...
zn

󰀶

󰀺󰀸

are the coordinate expressions for x,y, z. Then

(x+ y) + z =

󰀵

󰀹󰀷

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
y1
...
yn

󰀶

󰀺󰀸

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
z1
...
zn

󰀶

󰀺󰀸

=

󰀵

󰀹󰀷
x1 + y1

...
xn + yn

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
z1
...
zn

󰀶

󰀺󰀸

=

󰀵

󰀹󰀷
(x1 + y1) + z1

...
(xn + yn) + zn

󰀶

󰀺󰀸 .

On the other hand,

(x+ y) + z =

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸+

󰀵

󰀹󰀷

󰀵

󰀹󰀷
y1
...
yn

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
z1
...
zn

󰀶

󰀺󰀸

󰀶

󰀺󰀸

=

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸+

󰀵

󰀹󰀷
y1 + z1

...
yn + zn

󰀶

󰀺󰀸

=

󰀵

󰀹󰀷
x1 + (y1 + z1)

...
xn + (yn + zn)

󰀶

󰀺󰀸 .

By the associativity property of additional of real numbers, we have that

(xi + yi) + zi = xi + (yi + zi) for each i = 1, . . . , n,

so 󰀵

󰀹󰀷
(x1 + y1) + z1

...
(xn + yn) + zn

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
x1 + (y1 + z1)

...
xn + (yn + zn)

󰀶

󰀺󰀸

since saying that two vectors are equal means that their corresponding components are equal. Thus

(x+ y) + z = x+ (y + z)

as claimed.

11

Now we justify this geometrically, which requires drawing a good picture. The point is that,
geometrically, (x + y) + z means we first take the parallelogram with sides x + y and draw the
diagonal representing x + y, and then we take this diagonal and draw the parallelogram with it
as one side and z as the other, whereas x+ (y + z) means we start with the parallelogram having
y and z as sides instead. We only draw the picture for vectors in R2, which is a little easier to
visualize than R3—which we can still picture—or Rn for n ≥ 4, which we can’t picture.

Remark. What if we had more than three vectors? With four we have more than two possible
ways of grouping terms:

(x+ y) + (z+w), ((x+ y) + z) +w, x+ ((y + z) +w), etc.

Is it true that all such expressions are equal, so that we can write x+y+z+w and unambiguously
know what this means? Working this out algebraically as before shows that this comes down the
analogous property of addition of real numbers, but how do we know this property holds for real
numbers instead?

Of course, all such expressions are equal, and they remain so even if we have n vectors in
general. Rather than doing a lot of messy computations to verify this, this is the type of thing
which is taylor-made for induction. In particular, all we need is the fact that this associativity
property holds for three vectors at time, and from this we can derive the analogous property for
any number of vectors. (Technically, in the proof for the case of three vectors we did assume that
(x+ y)+ z = x+(y+ z) holds for real numbers, which is one thing we will take for granted, but no
other extra assumptions are necessary.) The following exercise is about using induction to prove
the most general associativity property.

Exercise. (Inspired by John Alongi) We will use the following notation: for any number of vectors,
v1 + · · · + vk denotes specifically the sum obtained by first adding v1 and v2, then adding v3 to
the result, then v4, then v5, and so on. So, for instance:

v1 + v2 + v3 + v4 := ((v1 + v2) + v3) + v4.

The goal is to show that this specific grouping of terms is the same as any other grouping.
Fix a positive integer ℓ ≥ 1. Then for any m ≥ 1 and any ℓ + m vectors v1, . . . ,vℓ+m, show

that
(v1 + · · ·+ vℓ) + (vℓ+1 + · · ·+ vℓ+m) = v1 + · · ·+ vℓ+m.

Proceeding by induction on m, the induction step will use the base case of three vectors in addition
to the induction hypothesis.

Warm-Up 2. We verify that for any vector x ∈ Rn and scalar a, the length of ax is given by |a|
times the length of x. This justifies the geometric picture of scalar multiplication, that multiplying

12

a vector by a scalar scales its length by that amount. (Of course, when a < 0, the vector also flips
direction, but here we are only interested in what happens to the length.) Before doing so, we must
define what we mean by the length of a vector in a higher-dimensional space Rn: for

x =

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸 ∈ Rn, the length of x is
󰁴

x21 + · · ·+ x2n.

The motivation is that, in the case of R2 or R3, this value indeed gives the usual notion of length

we’re accustomed to as the distance from [x1
x2] or

󰁫
x1
x2
x3

󰁬
to the origin. We thus use this special case

to define what “length” should mean in spaces we can’t easily visualize.
Let x be as above and let a ∈ R be a scalar. Then

ax =

󰀵

󰀹󰀷
ax1
...

axn

󰀶

󰀺󰀸 ,

so the length of ax is

󰁳
(ax1)2 + · · ·+ (axn)2 =

󰁴
a2(x21 + · · ·+ x2n) = |a|

󰁴
x21 + · · ·+ x2n,

which is indeed |a| times the length of x as claimed.

Properties of vector addition. Vector addition has some basic properties, none of which should
seem very surprising. Here we will focus on two of them, where the point is to understand them
from a “higher” point of view:

• (existence of an additive identity): there exists a unique vector 0 ∈ Rn such that x + 0 = x
for all x ∈ Rn, and

• (existence of additive inverses): for any x ∈ Rn, there exists a unique vector −x ∈ Rn such
that x+ (−x) = 0.

The zero vector 0 is thus the “additive identity” for vector addition, meaning that it has the
property that adding it to anything else gives back that other vector, and for a given x its negative
−x is its “additive inverse”, meaning that it has the property that adding it to x gives the zero
vector, so in effect −x “cancels out” x.

Concretely, 0 is the vector in coordinates which has all entires equal to 0, and it should not be
hard to see that this indeed satisfies the “additive identity” property. Perhaps the more important
point here is that 0 is the only vector satisfying the additive identity property, which where the
“unique” in the definition comes from. To show this is true, we argue using only the additive
identity property alone and nothing about coordinate expressions for vectors. A general strategy
when proving something is unique is to suppose there are two things having the required property,
and then show that they must actually be the same.

Proof that additive identities are unique. Suppose that 0 and 0′ are both additive identities for
vector addition and consider the sum 0+ 0′. On the one hand, since 0 is an additive identity this
sum should equal 0′, but on the other hand since 0′ is an additive identity, this sum should also
equal 0. Thus

0 = 0+ 0′ = 0′,

so 0 = 0′ and hence there is only one additive identity.

13

Why go through this trouble? The point of proving something like this—which might seem
“obvious”—is that the same argument then applies to any other type of situation where we have
a notion of “addition” defined. That is, later we will be seeing other types of “spaces” where we
have an addition operation, and rather than having to check that additive identities are unique in
each instance, we will know for sure that this is true since the proof we gave above works in any
such settings. Similarly, after proving (on the homework) that additive inverses are unique using
only the definition of “additive inverse”, we will know that this holds in these other scenarios as
well. This is the true power of mathematics: concepts usually apply much more generally beyond
the specific setting you’re interested in.

One more point regarding the additive inverse −x of x. Certainly, in coordinates this is just
going to be the vector whose coordinates are the negatives of those of x, or in other words, −x
will be the result of multiplying x by the scalar −1. However, if we didn’t have such expressions in
coordinates to work with, and if we couldn’t picture vectors geometrically, why should it be true
that the result of the scalar multiplication (−1)x should give the additive inverse −x of x? The
point is that from this approach, −x is simply denoting the vector with the property that if you
add it to x you get 0, and this definition makes no mention of any type of scalar multiplication.
This is what another problem on the homework asks you to show, that (−1)x is indeed the vector
satisfying the “additive inverse” property—once we can show this using only general properties of
vectors and nothing about coordinates, the same argument will apply to other types of “spaces” as
well.

Distributive properties. There are two distributive properties involving vector addition and
scalar multiplication, one where we distribute scalars and another where we distribute vectors:

• for any a ∈ R and x,y ∈ Rn, a(x+ y) = ax+ ay, and

• for any a, b ∈ R and x ∈ Rn, (a+ b)x = ax+ bx.

Both are straightforward to verify simply by computing both sides of the stated equalities and
verifying that they are equal, and both boil down the usual distributive property a(b+ c) = ab+ac
of real numbers.

And of course, the same distributive properties hold even when we have more than two vectors,
which hopefully by now we can guess that reason for this is “induction”.

Proof that the first distributive properties generalizes. We leave the check of the base case

a(v1 + v2) = av1 + av2

to you. Suppose that this distributive property holds for any k vectors, and let v1, . . . , vk+1 be
k + 1 vectors in Rm. By the base case, we have:

a(v1 + · · ·+ vk+1) = a[(v1 + · · ·+ vk) + vk+1] = a(v1 + · · ·+ vk) + avk+1.

By the induction hypothesis, a(v1 + · · ·+ vk) = av1 + · · ·+ avk, so all together we get

a(v1 + · · ·+ vk+1) = a(v1 + · · ·+ vk) + avk+1 = av1 + · · ·+ avk + avk+1,

showing that the distributive property holds for k + 1 vectors. We conclude by induction that

a(v1 + · · ·+ vn) = av1 + · · ·+ avn

for any n vectors in Rm.

14

Exercise. Prove that (a1+· · ·+an)v = a1v+· · ·+anv for any v ∈ Rm and n scalars a1, . . . , an ∈ R.

Exercise. Show geometrically that the distributive property a(x + y) = ax + ay holds; that is,
draw a(x+ y) and draw ax+ ay, and justify based on your drawing that these are the same.

Back to lines. Now that we’ve built up some basic properties of vectors, we return to an ob-
servation we made earlier regarding lines, only now we look at it from a new point of view. The
observation as the following: for a line ax+ by = c and points [x1

y1], [
x2
y2] on it, the values of m and

n such that 󰀗
mx1 + nx2
my1 + ny2

󰀘

is still on the line are those for which m + n = 1 in the c ∕= 0 case, and in the c = 0 case there is
no restriction.

The point now is that we can view the above vector as the result of scaling the two original
ones by m and n respectively and then adding the results:

󰀗
mx1 + nx2
my1 + ny2

󰀘
= m

󰀗
x1
y1

󰀘
+ n

󰀗
x2
y2

󰀘
.

So, why does it make sense geometrically that we get no restrictions on m and n when c = 0 while
we do get a restriction when c ∕= 0? When c ∕= 0, it is not true that adding two vectors on the line
ax+ by = c must always give a vector on the same line, nor is it true that scaling a vector on the
line must result in another vector on the line:

(Notice that when we say a vector is “on” a line, we mean that the endpoint of the vector—namely
the point corresponding to the vector in coordinates—is on the line; we do not mean that the arrow
representing the vector literally lies on the line.) Only certain types of scalings geometrically result
in something on the same line. However, in the c = 0 case, in fact adding any two points on the
line gives something on the same line, and scaling anything on the line gives something still on it.

This is really the key difference between those lines for which c ∕= 0 and those for which c = 0,
or in other words, between lines which don’t pass through the origin and those which do. This type
of distinction will play a big role in many of the topics we’ll see going forward.

15

Lecture 5: Linear Combinations

Warm-Up 1. We show that for any scalar a ∈ R, a0 = 0; that is, multiplying the zero vector by
any scalar results in the zero vector. This is clear if we work with coordinates:

a

󰀵

󰀹󰀷
0
...
0

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
a0
...
a0

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
0
...
0

󰀶

󰀺󰀸 ,

but the point is that will justify this in a “coordinate-free” way. By doing so we know that the
same fact will be true in other settings where addition and scalar multiplication make sense but
where we don’t necessarily have “obvious” coordinates to work with. (What I mean by this will be
clear once we talk about vector spaces.)

Note that 0+ 0 = 0. Thus
a0 = a(0+ 0) = a0+ a0.

Whatever a0 is, it has an additive inverse, and adding this additive inverse to both sides gives

0 = a0

as claimed. (To be clear, after adding −a0 to both sides we get 0 = a0 + 0, and the right side is
a0 by the additive identity property of 0.)

Exercise. Show that for any v ∈ Rn, 0v = 0. Do this in a way which does not involve the
coordinate representation of v.

Warm-Up 2. The Warm-Up and Exercise above show that if a = 0 or v = 0, then av = 0. Here
we prove the converse: if av = 0, then a = 0 or v = 0. This says that the only way in which
multiplying a scalar and a vector can give the zero vector is if either the scalar or vector were zero
to begin with.

How exactly do we prove something which claims one of two (or more) things can happen? The
key is to consider the possible cases as to what a can be: either a = 0 or a ∕= 0. If a = 0, then
certainly “a = 0 or v = 0” is true since at least one is zero, so there is nothing to show in this case.
So, we really know have to think about the case when a ∕= 0—then we want to show that v must
be zero. This is a general strategy for proving statements of the form “if P , then Q or R” where
P,Q,R are some statements: we instead show that “if P and Q is false, then R”. The reason as to
why this works coming from considering the only possible cases for Q: either Q is true, in which
case there was really nothing to show after all, or Q is false, in which case we must show that R
must be true. In this particular example, we could instead consider what happens with v: either
v = 0, in which case there is nothing to show, or v ∕= 0, in which case we would have to show that
a = 0. This would be an alternate approach to the one we use below.

So, to show that if av = 0, then a = 0 or v = 0, we assume that av = 0 and a ∕= 0, and
show that v = 0. Since a ∕= 0, the scalar 1

a is defined, so multiplying av = 0 through by 1
a is

possible—this gives
1

a
(av) =

1

a
0, so v = 0

since by the first Warm-Up we know that 1
a0 = 0.

Back to intersecting lines. Previously we considered the system of linear equations:

x+ 2y = 0

−3x− 2y = 8

16

which has exactly one solution: x = −4, y = 2. Geometrically this means that the lines defined by
the two given equations in R2 intersect in the point (−4, 2) and nowhere else.

However, there is another way to interpret this system, which is perhaps more interesting.
Consider both sides of the given system as the components of vectors, so we have the vector
equality: 󰀗

x+ 2y
−3x− 2y

󰀘
=

󰀗
0
8

󰀘
.

Now, the left-hand side can be expressed further using vector addition and scalar multiplication as:

󰀗
x

−3x

󰀘
+

󰀗
2y
−2y

󰀘
= x

󰀗
1
−3

󰀘
+ y

󰀗
2
−2

󰀘
,

so the original linear system is the same as the vector equation

x

󰀗
1
−3

󰀘
+ y

󰀗
2
−2

󰀘
=

󰀗
0
8

󰀘
.

A solution of the original system gives scalars x, y for which this vector equation is true, and
conversely scalars x, y for which this vector equation is true in turn gives a solution of the original
system.

The left-hand side of this vector equation is called a linear combination of the vectors
󰀅

1
−3

󰀆
and󰀅

2
−2

󰀆
, so the fact that this equation has a solution (x, y) = (−4, 2) means that the vector [08] can

be expressed as a linear combination of
󰀅

1
−3

󰀆
of

󰀅
2
−2

󰀆
.

Viewing linear combinations geometrically. Consider the vectors u,v ∈ R2 and the point (or
vector) b ∈ R2:

We claim that b is a linear combination of u and v. Indeed, the question is whether we can find a
multiple of u and a multiple of v which add up to b. Multiples of u lie along the line through the
origin and u and multiples of v lie along the line through the origin and v, and by “eyeballing”
the picture we can draw a parallelogram with edges along these lines whose fourth corner is at b:

17

We will soon remove the vagueness of “eyeballing” and see how to justify facts like this precisely.
In fact, given any point in R2, you can convince yourself that it is possible to draw a parallelo-

gram with edges along the lines through u and v whose fourth corner will be at that point (recall
that negative scalar multiples are drawn in the direction opposite the given vector), so anything in
R2 is a linear combination of the u and v drawn above. We will see that this essentially reflects
the fact that u and v are not parallel.

Definition. A linear combination of the vectors v1, . . . ,vk ∈ Rn is an expression of the form

a1v1 + a2v2 + · · ·+ akvk

where a1, a2, . . . , ak ∈ R are scalars.

Example. Let’s see how to work with this definition. Suppose that b ∈ Rn is a linear combination
of u,v1, . . . ,vk ∈ Rn and that u is a linear combination of v1, . . . ,vk. We claim that b is then a
linear combination of v1, . . . ,vk alone.

Since b is a linear combination of u,v1, . . . ,vk, there exist scalars a, a1, . . . , ak ∈ R such that

b = au+ a1v1 + · · ·+ akvk.

Since u is a linear combination of v1, . . . ,vk, there are scalars c1, . . . , ck such that

u = c1v1 + · · ·+ ckvk.

Substituting this expression in place of u gives:

b = au+ a1v1 + · · ·+ akvk

= a(c1v1 + · · ·+ ckvk) + a1v1 + · · ·+ akvk

= (ac1 + a1)v1 + · · ·+ (ack + ak)vk,

so b is a linear combination of v1, . . . ,vk as claimed.
The point of this result is to say that if one vector u in a collection of vectors is a linear

combination of the others, then u can be thrown away and anything which could be expressed as
a linear combination of the original vectors can still be expressed as a linear combination of the
remaining vectors, so that in a sense u was “redundant”.

Exercise. Prove the following generalization of the above fact: if u1, . . . ,uℓ ∈ Rn are each linear
combinations of v1, . . . ,vk ∈ Rn, then anything which can be expressed as a linear combination of

18

u1, . . . ,uℓ,v1, . . . ,vk can be expressed as a linear combination of v1, . . . ,vk alone. Induction (on
the number of “u” vectors) might be a nice way to do this.

Example we didn’t do in class. Suppose that none of the vectors v1, . . . ,vk ∈ Rn can be
expressed as a linear combination of the others and suppose that u ∈ Rn is a vector which is not a
linear combination of v1, . . . ,vk. Then we claim that none of the vectors in the longer list

v1, . . . ,vk,u

can be expressed as a linear combination of the others. Note the subtlety: we know for sure that the
last vector u in this list can’t be expressed as a linear combination of the rest since this is part of
what we are assuming, and we know that none of the vi’s can be expressed as a linear combinations
of the v’s alone, but why couldn’t one of the vi’s be expressible as a linear combination of the v’s
and u? This requires justification.

Suppose to the contrary that vi for some 1 ≤ i ≤ k is a linear combination of

v1, . . . ,vi−1,vi+1, . . . ,vk,u.

(Note that this list excludes vi.) So, for some scalars a1, . . . , ai−1, ai+1, . . . , ak, a ∈ R we have

vi = a1v1 + · · ·+ ai−1vi−1 + ai+1vi+1 + · · ·+ akvk + au.

If a = 0, the final term isn’t there so this expresses vi as a linear combination of the v’s alone,
which is not possible by assumption. Thus we must have a ∕= 0. But then we can rearrange terms
to get

au = vi − a1v1 − · · ·− ai−1vi−1 − ai+1vi+1 − · · ·− akvk,

which in turn using the fact that a ∕= 0 gives:

u = −a1
a
v1 − · · ·− ai−1

a
vi−1 +

1

a
vi −

ai+1

a
vi+1 − · · ·− ak

a
vk.

But this now expresses u as a linear combination of v1, . . . ,vk, which contradicts the assumption
that u was not expressible as such a linear combination. Since the assumption that vi for some
1 ≤ i ≤ k is a linear combination of

v1, . . . ,vi−1,vi+1, . . . ,vk,u

leads to a contradiction, we conclude that none of the vectors

v1, . . . ,vk,u

is a linear combination of the others.

Remark. In words, the above example shows that if we no vectors in some list are linear combina-
tions of the others and we tack on a new vector which is not a linear combination of the vectors in
the original list, then the vectors in the new list still have the property that none of the vectors is
a linear combination of the rest. The importance of this example and the one before it will become
clear once we talk about the notions of span and linear independence.

Affine combinations. We return to considering a line ax + by = c in R2 which does not pass
through the origin, so c ∕= 0. If [x1

y1] and [x2
y2] are on this line, we have seen that

󰀗
mx1 + nx2
my1 + ny2

󰀘
= m

󰀗
x1
y1

󰀘
+ n

󰀗
x2
y2

󰀘

19

is also on the line only when m + n = 1. Thus, not all linear combinations of [x1
y1] of [

x2
y2] remain

on the line, but only those involving coefficients which add up to 1.
Such linear combinations will come up often enough for us that we give them a special name:

an affine combination of v1, . . . ,vk ∈ Rn is a linear combination c1v1 + · · · + ckvk such that
c1 + · · ·+ ck = 1. We’ll see the types of situations in which affine combinations arise soon enough.

Lecture 6: Linear Systems

Warm-Up. Consider a hyperplane a1x1 + · · ·+ anxn = 0 passing through the origin in Rn. To be
clear, we speaking about a hyperplane we require that at least one coefficient a1, . . . , an is nonzero,
and to say that it passes through the origin means that the point where all xi coordinates equal
zero satisfies the given equation; a hyperplane which does not pass through the origin would have
equation a1x1 + · · ·+ anxn = b where b ∕= 0. In the case of R2, a hyperplane is just a line, and in
the case of R3 a hyperplane is an ordinary plane, so a hyperplane in general is a generalization of
a line or plane to higher dimensions.

We show that there are n − 1 vectors we can find with the property that any point on this
hyperplane is a linear combination of those n − 1 vectors. Looking at a special case—that of a
(hyper)plane in R3—can help suggest what to do in general. Say we had the plane

2x+ y + 3z = 0.

The key realization is that such an equation allows us to express one variable in terms of the other
two, say y = −2x− 3z. Thus any point on this plane must look like

󰀵

󰀷
x
y
z

󰀶

󰀸 =

󰀵

󰀷
x

−2x− 3z
z

󰀶

󰀸 .

But we can rewrite this second expression as

󰀵

󰀷
x

−2x− 3z
z

󰀶

󰀸 =

󰀵

󰀷
x

−2x
0

󰀶

󰀸+

󰀵

󰀷
0

−3z
z

󰀶

󰀸 = x

󰀵

󰀷
1
−2
0

󰀶

󰀸+ z

󰀵

󰀷
0
−3
1

󰀶

󰀸 ,

so any point on the plane must look like

󰀵

󰀷
x
y
z

󰀶

󰀸 = x

󰀵

󰀷
1
−2
0

󰀶

󰀸+ z

󰀵

󰀷
0
−3
1

󰀶

󰀸

for some x, z ∈ R, which says that any point on this plane is a linear combination of the concrete

vectors
󰁫

1
−2
0

󰁬
and

󰁫
0
−3
1

󰁬
.

Now we return to the general setting. Since a1x1 + · · ·+ anxn = 0 is a hyperplane, at least one
coefficient is nonzero—say ai ∕= 0. Then the components of any point on this hyperplane satisfy

aixi = −a1x1 − · · ·− 󰁧aixi − · · ·− anxn

where the notation 󰁧aixi means that this term is omitted. (For instance, a1x1 + 󰁧a2x2 + a3x3 means
a1x1+a3x3. The point of this notation is that it is a little simpler to write and read than something
like

aixi = −a1x1 − · · ·− ai−1xi−1 − ai+1xi+1 − · · ·− anxn,

20

which is how we originally wrote this in class.) Since ai ∕= 0, this gives

xi = −a1
ai

x1 − · · ·− 󰁥xi − · · ·− an
ai

xn.

Thus any point on the hyperplane must look like
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

x1
x2
...
xi
...
xn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

x1
x2
...

−a1
ai
x1 − · · ·− 󰁥xi − · · ·− an

ai
xn

...
xn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= x1

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
0
...

−a1
ai
...
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+ x2

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
...

−a2
ai
...
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+ · · ·+ xn

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
...

−an
ai
...
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

where the first vector in the final expression encodes all the coefficients of x1, the second all the
coefficients of x2, and so on. There are n− 1 terms in this final expression since there is one term
for each of the variables x1, . . . , 󰁥xi, . . . , xn excluding xi, so this expressions shows that any point
on the hyperplane in question is a linear combination of the n− 1 vectors

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
0
...

−a1
ai
...
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
...

−a2
ai
...
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, . . . ,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
...

−an
ai
...
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

was was to be shown. We say that these vectors span the hyperplane, a term for which we’ll give
a precise definition soon.

Question to think about. Can we always find n−1 vectors different than those above which also
span the hyperplane? Is it possible to have fewer than n− 1 vectors which span the hyperplane?

Linear systems. As we’ve seen, questions which ask whether some vector is a linear combination
of others boil down to questions about systems of linear equations, since adding up the terms on
the left of

x1v1 + · · ·+ xnvn = b

and equation the resulting components with those on the right results in a system of m equations
(where m is the number of components of each vector involved, so that each vector is in Rm) and
the n variables x1, . . . , xn. So, we had better understand how to solve linear systems in general.

An m × n linear system (or a system of m linear equations in n variables) is a collection of
equations of the form

a11x1 + · · ·+ a1nxn = b1

21

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

where all the aij and the bi are scalars. (Notice that in this notation, the first index on a coefficient
aij tells us which equation it comes from while the second index tells us to which variable it is
attached.) There is no restriction on these scalars, meaning that having some of them be zero is
allowed. A solution of this linear system is a vector in Rm with entries x1, . . . , xn which satisfy all
equations simultaneously.

Elementary operations. The basic approach to finding all solutions of a linear system comes
from performing certain operations which 1) result in simpler equations by “eliminating” variables,
and 2) do not change the possible solutions. We will refer to the following operations as elementary
operations:

• swap one equation for another,

• multiply an equation by a nonzero scalar, and

• add a multiple of one equation to another.

Exercise. Show that the first type of elementary operation above can be obtained via a sequence
of operations of only the second and third types.

Theorem. The key fact is that elementary operations do not alter solutions of linear systems. To
be precise, suppose that

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

is a linear system and consider the system obtained via one elementary operation. Then any
solution of the original system is also a solution of the new system, and conversely any solution of
the new system is in turn a solution of the original system.

Proof. We prove that the second type of operation—multiplying a row by a nonzero scalar—does
not alter solutions. The analogous fact for the third type of operation is left to the homework, and
the fact that row swaps do not alter solutions can either be seen as “obvious” or can be derived
from the result in the Exercise above that row swaps can be described using the other two types
of elementary operations.

Suppose that (x′1, x
′
2, . . . , x

′
n) is a solution of the original system, so that

a11x
′
1 + · · ·+ a1nx

′
n = b1

a21x
′
1 + · · ·+ a2nx

′
n = b2
...

am1x
′
1 + · · ·+ amnx

′
n = bm.

22

Note that we are making a distinction between a variable xi and the value x′i we are substituting
into it. The system obtained by multiplying the i-th row by a nonzero scalar r ∕= 0 has as its i-th
equation:

rai1x1 + · · ·+ rainxn = bi.

Since this is the only equation in the new system which is different from the original system, the
values (x′1, . . . , x

′
n) still satisfy all other equations in the new system.

To show that these values also satisfy the new i-th equation, we simply plug in each x′i in place
of each xi and verify that the required equation is satisfied:

rai1x
′
1 + · · ·+ rainx

′
n = r(ai1x

′
1 + · · ·+ rain) = rbi

where we know that ai1x
′
1 + · · ·+ rain = bi since we are assuming (x′1, . . . , x

′
n) is a solution of the

original system. Thus (x′1, . . . , x
′
n) does satisfy the new i-th equation rai1x1 + · · ·+ rainxn = bi, so

(x′1, . . . , x
′
n) is a solution of the new system.

Now we show that if (x′1, . . . , x
′
n) is a solution of the new system, then it is also a solution of

the original system. We can do this using a similar algebraic approach as before where we take
that (x′1, . . . , x

′
n) satisfies the equation

rai1x
′
1 + · · ·+ rainx

′
n = rbi

and show then that it must satisfy ai1x
′
1 + · · · + ainx

′
n = bi as well, but to save some algebra we

can argue as follows. Note that the old i-th equation ai1x1 + · · · + ainxn = bi can be obtained by
multiplying the new i-th equation rai1x1 + · · · + rainxn = rbi by the nonzero scalar 1

r , so the old
system can be obtained from the new system by this elementary operation. But we just showed
in the first part that if (x′1, . . . , x

′
n) is a solution of the new system, then it is also a solution of

any system obtained by multiplying an equation of the new system by a nonzero scalar, so this
says right away that (x′1, . . . , x

′
n) is indeed a solution of the old system. We conclude that the old

system and the new one have exactly the same solutions.

Exercise. Finish the proof of the theorem above, by showing that adding a multiple of one row to
another does not change the possible solutions of a linear system.

Remark. The direction in the theorem above which shows that a solution of the new system gives
a solution of the old system depended on the fact that the old system can be obtained from the new
one still via elementary operations. This is also true for the other types of elementary operations,
meaning that any elementary operation has an inverse operation which does the “opposite” of
what the original operation does. For instance, the operation which swaps two equations is its own
inverse, and the operation which adds r times row i to row j is the operation which adds −r times
row i to row j.

Lecture 7: Matrices and Row Reduction

Warm-Up. We show that the linear systems

ax+ by + cz = d

fx+ gy + hz = j

mx+ ny + pz = q

23

and

(a− 2f)x+ (b− 2g)y + (c− 2h)z = d− 2j

(2a+ 3f)x+ (2b+ 3g)y + (2c+ 3h)z = 2d+ 3j

(a+ 2f +m)x+ (b+ 2g + n)y + (c+ 2h+ p)z = d+ 2j + q

have the same solutions. To do so, all we need to show is that the second system is obtainable from
the first via elementary operations.

Certainly, the new first equation is obtained via the single elementary operation which takes −2
times the second equation and adds it to the first. Now, to get the new second equation we need to
take 2 times the first and add it to 3 times the second, but this is not an allowed single elementary
operation since we are multiplying not only the equation which we are adding by a scalar but also
the equation which is being added on to. However, the point is that we can view this as the result
of two elementary operations: first multiply the second equation by 3, and then add 2 times the
first to it.

Finally, note that adding the first equation plus 2 times the second equation to the third in
the original system gives the new third equation—again this process does not consist of a single
elementary operation, but is indeed something we can describe using a sequence of two elementary
operations: add 2 times the second equation to the third to give as a new third equation:

(2f +m)x+ (2g + n)y + (2h+ p)z = 2j + q,

and then add the original first equation to this in order to obtain the required third equation

(a+ 2f +m)x+ (b+ 2g + n)y + (c+ 2h+ p)z = d+ 2j + q.

Since the second system can be obtained from the first via sequences of (possibly more than one)
elementary operation, it and the original system have the same solutions.

Remark. We will often combine two or more elementary operations in one step when solving a
system of equations, but note that at times it will be important to distinguish between performing
a single elementary operation vs a sequence of such operations.

Example. Here is an example we used to come up with some linear system we were interested in
solving, with the point being to illustrate yet further how linear systems might arise in practice.
Suppose we want to find all polynomials p(x) of degree at most 3 satisfying the properties:

p(1) = 2, p(2) = 0, and

󰁝 2

0
p(x) dx = 4.

If we let p(x) = ax3 + bx2 + cx + d for some unknown scalars a, b, c, d ∈ R, these properties place
the following restrictions on a, b, c, d:

a+ b+ c+ d = 2, 8a+ 4b+ 2c+ d = 0, and 4a+
8

3
b+ 2c+ 2d = 4.

Thus finding the required polynomials boils down to finding the values of a, b, c, d satisfying the
linear system

a+ b+ c+ d = 2

8a+ 4b+ 2c+ d = 0

4a+ 8
3b+ 2c+ 2d = 4.

24

Actually, since we know that our elementary operations do not alter possible solutions, let’s go
ahead and clear fraction (since fractions are harder to do algebra with) in the third equation by
multiplying the third equation by 3, and solve

a+ b+ c+ d = 2

8a+ 4b+ 2c+ d = 0

12a+ 8b+ 6c+ 6d = 12

instead. We do this using the process of Gauss-Jordan elimination, performed on the augmented
matrix of our system: 󰀵

󰀷
1 1 1 1 | 2
8 4 2 1 | 0
12 8 6 6 | 12

󰀶

󰀸 ,

which is the (in this case 3 × 5) matrix which encodes all coefficients of our system as well as
the values to the right of the equals sign. The vertical lines before the final columns are just to
separate visually the portion of the augmented matrix which involves coefficients of variables and
the portion which involves values to the right of the equals sign.

Gauss-Jordan elimination. The goal of Gauss-Jordan elimination is to transform (or row-reduce)
the given matrix into one in so-called reduced row-echelon form via elementary row operations,
which are the elementary operations we saw earlier for equations only now performed on the rows
of a matrix. The process of performing elementary row operations to a matrix is also called row
reduction. As the “elimination” in the name of this process suggests, at each step we get a matrix
which describes a linear system in which more and more variables have been eliminated.

We won’t go into a description of Gauss-Jordan elimination here, but will instead defer to the
book and to my previous lecture notes for Math 290, which you can find on canvas. I strongly urge
to look at these, not only to clarify things in the book but also to see more examples worked out
in detail. You should also check the book or my notes for a precise definition of what it means for
a matrix to be in “reduced row-echelon form”.

Question to think about. Are reduced row-echelon forms unique? That is, if a matrix is
transformed into a matrix A in reduced row-echelon form by some elementary row operations, and
if by going through a different set of row operations it is transformed into a matrix B which also
happens to be in reduced row-echelon form, must A and B be the same?

Back to example. The Gauss-Jordan elimination process applied to the augmented matrix in
our polynomial example yields the following matrices at various steps, where an arrow indicates
the result of some row operations:

󰀵

󰀷
1 1 1 1 | 2
8 4 2 1 | 0
12 8 6 6 | 12

󰀶

󰀸 →

󰀵

󰀷
1 1 1 1 | 2
0 −4 −6 −7 | −16
0 −4 −6 −6 | −12

󰀶

󰀸 →

󰀵

󰀷
4 0 −2 −3 | −8
0 −4 −6 −7 | −16
0 0 0 1 | 4

󰀶

󰀸

→

󰀵

󰀷
4 0 −2 0 | 4
0 −4 −6 0 | 12
0 0 0 1 | 4

󰀶

󰀸 →

󰀵

󰀷
1 0 −1/2 0 | 1
0 1 3/2 0 | −3
0 0 0 1 | 4

󰀶

󰀸 .

The first nonzero entry of each row is called a pivot (note that the book also calls these “leading
variables”), and the point of each step is to make all entires above and below a pivot equal to zero.
The final matrix above is in reduced row-echelon form.

25

What’s the point? We know that the linear system corresponding to the final matrix has the
same solutions as the one corresponding to the original matrix since row operations do not change
solution sets. The final reduced row-echelon form is the augmented matrix of:

a − 1
2c = 1

b+ 3
2c = −3

d = 4

,

which tells us after solving for a in the first equation and b in the second that any solution must
look like 󰀵

󰀹󰀹󰀷

a
b
c
d

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷

1 + 1
2c

−3− 3
2c

c
4

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷

1
−3
0
4

󰀶

󰀺󰀺󰀸+ c

󰀵

󰀹󰀹󰀷

1/2
−3/2
1
0

󰀶

󰀺󰀺󰀸 .

Thus this, and hence the original, system has infinitely many solutions, since for each arbitrary
value of c the above expression will give values of a, b, d which satisfy the given system of equations.
The variable c is called a free variable since it does not correspond to a pivot, so when writing the
general form of a solution we are expressing all pivot variables in terms of the non-pivot (or free)
variables. The fact that there is only one free variable tells us that the set of solutions actually
forms a line in R4, but we’ll come back to this later.

To answer the original question, the polynomials p(x) of degree at most 3 which satisfy

p(1) = 2, p(2) = 0, and

󰁝 2

0
p(x) dx = 4

are those of the form

p(x) =

󰀕
1 +

1

2
c

󰀖
x3 +

󰀕
−3− 3

2
c

󰀖
x2 + cx+ 4

where c ∈ R is any real number.

Other things that can happen. Consider the linear system with augmented matrix

󰀵

󰀹󰀹󰀷

1 2 1 4 −1 | 5
−2 −4 −2 −3 −3 | −5
3 6 5 10 −4 | 14
−1 −2 1 −2 −4 | 2

󰀶

󰀺󰀺󰀸 .

When going through the row-reduction process at some point you might end up with

󰀵

󰀹󰀹󰀷

−2 −4 0 −10 1 | −11
0 0 2 −2 −1 | −1
0 0 0 −4 4 | −8
0 0 0 0 0 | 1

󰀶

󰀺󰀺󰀸 .

This is not in reduced row-echelon form yet for various reasons (pivots aren’t equal to 1, not all
entries above a pivot are zero), but we can already tell that the corresponding linear system has
no solution: the final row corresponds to the equation 0 = 1, which can’t possibly be true.

If there is a solution but there are no free variables, then we are in the scenario where there is
exactly one solution. So now we can see the algebraic reason as to why any linear system must have
zero, exactly one, or infinitely many solutions: either we have a row in the reduced-row echelon

26

form corresponding to an impossible equation, so there are no solutions, or we don’t, in which case
we have exactly one solution if there are no free variables and we have infinitely many if there are
free variables. In particular, if we have at least two solutions then there must be a free variable, so
that in fact we must infinitely many solutions.

All of this works just as well for linear systems involving complex coefficients, complex variables,
and complex solutions. We’ll see an example of this next time.

Lecture 8: More on Matrices and Linear Systems

Warm-Up 1. Note that I made a slight change to the version we did in class: here, the lower
right entry is −k− 4 instead of −k+2. This will give a scenario in which there are infinitely many
solutions for some k.

We determine the values of k for which the system with augmented matrix

󰀵

󰀹󰀹󰀷

2 −1 2 | 1
−4 2 −4 | −2
4 −k − 2 7 | 4
−6 k2 + 3 k2 − 4k − 6 | −k − 4

󰀶

󰀺󰀺󰀸

has zero, one, or infinitely many solutions. Row reducing gives:

󰀵

󰀹󰀹󰀷

2 −1 2 | 1
−4 2 −4 | −2
4 −k − 2 7 | 4
−6 k2 + 3 k2 − 4k − 6 | −k − 4

󰀶

󰀺󰀺󰀸 →

󰀵

󰀹󰀹󰀷

2 −1 2 | 1
0 0 0 | 0
0 −k 3 | 2
0 k2 k2 − 4k | −k − 1

󰀶

󰀺󰀺󰀸

→

󰀵

󰀹󰀹󰀷

2 −1 2 | 1
0 −k 3 | 2
0 0 k2 − k | k − 1
0 0 0 | 0

󰀶

󰀺󰀺󰀸 .

To be clear, in the final step we multiplied the third row by k and added it to the fourth row, and
then swapped some rows. This is not in reduced row-echelon form, but it is in a form which will
allow us answer the question. The key point is that we can already determine where the pivots in
the reduced row-echelon form would be.

In order to have no solutions, the third row must be of the form

󰀅
0 0 0 | nonzero

󰀆

since this would correspond to an impossible equation. Such a row occurs when k2 − k = 0 and
k − 1 ∕= 0, so this happens for k = 0. Thus for k = 0 the system has no solutions. For k = 1, the
third row consists of all zeroes and the reduced matrix is thus:

󰀵

󰀹󰀹󰀷

2 −1 2 | 1
0 −1 3 | 2
0 0 0 | 0
0 0 0 | 0

󰀶

󰀺󰀺󰀸 .

In this case the third column of the reduced row-echelon form will not contain a pivot, so it
corresponds to a free variable. Since there is at least one solution—because there is no impossible
equation—there are infinitely many solutions when k = 1.

27

Finally we consider what happens for k ∕= 0, 1. In this case there will be a pivot in each column
corresponding to a variable, meaning that there are no free variables and hence there cannot be
infinitely many solutions. Since there will be no impossible equation, there will be at least solution,
so we conclude that there is exactly one. Another way to see this is as follows. The third row gives

(k2 − k)z = k − 1,

which since k2 − k ∕= 0 can be solved to give a specific value of z. The second row gives

−ky + 3z = 2,

and since k ∕= 0, plugging in the previously-obtained value for z will give a way to solve explicitly
for a unique value of y. Then plugging this y value and the previous z value into the equation
corresponding to the first row will give an equation which can be solved to obtain a unique value
of x. Thus we get unique values for x, y, z, so there is only one solution.

Warm-Up 2. We solve the complex linear system:

2z + 3iw = 0

(1 + i)z − w = −i.

Reducing the augmented matrix gives:

󰀗
2 3i | 0

1 + i −1 | −i

󰀘
→

󰀗
2 3i | 0
0 2− 3i | −2i

󰀘
→

󰀗
−4 + 6i 0 | 6

0 2− 3i | −2i

󰀘
,

so the reduced row-echelon form is
󰀗
1 0 | 6/(−4 + 6i)
0 1 | −2i/(2− 2i)

󰀘
.

Thus the system has a unique solution:

z =
6

−4 + 6i
, w = − 2i

2− 2i
.

The key takeaway is that this is no different than solving a system with real coefficients, except for
the use of complex numbers. Rewriting the given system in vector form as

z

󰀗
2

1 + i

󰀘
+ w

󰀗
3i
−1

󰀘
=

󰀗
0
−i

󰀘
,

we can interpret the solution we found as saying that those are the coefficients needed to express󰀅
0
−i

󰀆
as a linear combination of

󰀅
2

1+i

󰀆
and

󰀅
3i
−1

󰀆
.

Matrix equations. Next time we will prove that reduced row-echelon forms are unique in a
certain sense. Before that, we take note of some basic facts.

A key observation is that any linear system can be written as a matrix equation of the form

Ax = b

where A is the coefficient matrix of the system encoding the coefficients of all variables, x is the
unknown vector to-be-solved for encoding the variables, and b encodes the numbers to the right of

28

the equals signs. For an m × n system, A will be an m × n matrix, x will be a vector in Rn, and
b a vector in Rm. The product Ax of a matrix and a vector is defined precisely so that Ax = b
encodes the linear system. Check the book or my Math 290 notes for details.

The upshot is that we know three ways of viewing the same type information: a system of linear
equations, and linear combination vector equation, and a matrix equation. Each point of view will
be useful going forward.

Row equivalence. We say that two matrices A and B (of the same size) are row equivalent if one
can be obtained from the other using elementary row operations. Note that if B can be obtained
from A using some row operations, then A can be obtained from B by performing the inverse of
each of those row operations in the opposite order.

We’ll talk more about row equivalence next time, but for now here is a key point: if A and B
are row equivalent, then the equations Ax = 0 and Bx = 0 have the same solutions. Indeed, the
augmented matrix of the first system is of the form

󰀅
A | 0

󰀆

where 0 denotes a column of zeroes, and performing the row operations which transform A into B
on this augmented matrix will transform it into

󰀅
B | 0

󰀆

since row the column of zeroes at the beginning will remain zeroes throughout. (Note that if b ∕= 0,
performing these row operations to the augmented matrix

󰀅
A | b

󰀆

does not necessarily give
󰀅
B | b

󰀆
since in this case the final column b could very well end up

being something different.) Since
󰀅
A | 0

󰀆
can be transformed into

󰀅
B | 0

󰀆
using row operations, the

corresponding systems Ax = 0 and Bx = 0 have the same solutions as claimed. This fact will be
important next time when proving the uniqueness of reduced row-echelon forms.

Question to think about. If Ax = 0 and Bx = 0 have the same solutions, must A and B be
row equivalent?

Lecture 9: Reduced Echelon Form

Warm-Up. I made a slight change as compared to the version we did in class: instead of asking
whether the system in question has a unique solution, we ask how many solutions it has.

We define the rank of a matrix to be the number of pivots in its reduced row-echelon form.
Note that for this definition to make sense, we have to know that this number of pivots does not
depend on the reduced echelon form we use, but this will follow from the fact we’ll prove in a bit
that reduced echelon forms are unique.

Suppose that A is a 3 × 4 matrix of rank 3. How many solutions does the equation Ax = b

where b =
󰁫
1
2
3

󰁬
have? We show it has infinitely many. Consider the linear system with augmented

matrix
󰀅
A | b

󰀆
. The first observation is that since A has 4 columns and rank 3, the reduced echelon

form of A has a column without a pivot, and so this corresponds to a free variable. Thus it is not
possible for Ax = b to have exactly one solution. Now, since A only has 3 rows, each row of the
reduced echelon form must contain a pivot, so an impossible equation of the form

0 = something nonzero

29

cannot arise. (This would require the reduced echelon form of A to have a row of all zeroes, and
this row would then not contain a pivot.) Thus Ax = b cannot have zero solutions, and hence it
must have infinitely many solutions.

As a side note, observe that the reduced echelon form of a 3 × 4 matrix of rank 3 must be of
the form: 󰀵

󰀷
1 0 0 ?
0 1 0 ?
0 0 1 ?

󰀶

󰀸 ,

󰀵

󰀷
1 0 ? 0
0 1 ? 0
0 0 0 1

󰀶

󰀸 ,

󰀵

󰀷
1 ? 0 0
0 0 1 0
0 0 0 1

󰀶

󰀸 , or

󰀵

󰀷
0 1 0 0
0 0 1 0
0 0 0 1

󰀶

󰀸 ,

where a question mark denotes a location which can have any possible value.

Theorem. (Uniqueness of Reduced Row-Echelon Form) Suppose that a matrix A is row equivalent
to matrices B and C, both of which are in reduced row-echelon form. Then B and C must be the
same. This says that when performing row operations on A to obtain a matrix in reduced row-
echelon form, there is only one such reduced form with which we can end up. Thus, it makes sense
to talk about the reduced row-echelon form of A, which is usually denoted by rref(A).

Remark. Before giving the proof, we give a comment or two on the proof itself. This is the most
difficult proof we have come across yet, and is the first proof which involves more than simply
playing around with equations and definitions in that it requires a firm understanding of various
concepts. This is not a proof you would be expected to memorize or be able to come up with on
your own in a first course such as this—what is expected is that you can read through the proof
and understand why it works. The proof illustrates and brings together many topics we’ve seen.

Proof of Theorem. (This proof is based on a proof due to John Alongi, which in turn is based on
a proof due to Thomas Yuster. This proof basically just clarifies certain steps in their proofs.)

Since A is row equivalent to B, the equations Ax = 0 and Bx = 0 have the same solutions,
and since A is row equivalent to C, Ax = 0 and Cx = 0 have the same solutions. Thus Bx = 0
and Cx = 0 have the same solutions.

We proceed using induction on the numbers of columns of the matrices involved. For the base
case, suppose that A (and hence B and C) are m× 1 matrices. There are only two possible m× 1
matrices in reduced row-echelon form: the one with a 1 as the first entry and zeroes elsewhere, and
the one with all entries equal to 0: 󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
and

󰀵

󰀹󰀹󰀹󰀷

0
0
...
0

󰀶

󰀺󰀺󰀺󰀸
,

so B and C must each be one of these. But the first matrix above has only one solution to

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
x = 0,

namely x = 0, while the second has any x ∈ R as a solution. Thus since Bx = 0 and Cx = 0 have
the same solutions, it cannot be the case that B is one of the matrices above and C is the other,
so they must each be the same one and hence are equal.

Now for the inductive hypothesis assume that the reduced row-echelon form of anym×k matrix,
for some k ≥ 1, is unique, meaning that there is only one matrix in reduced row-echelon form to

30

which an m×k matrix can be row equivalent. Suppose that A is an m× (k+1) matrix, so B and C
are as well. Denote by Ak, Bk, Ck the m× k matrices obtained by removing the (k+1)-st columns
of A,B,C respectively. The row operations which transform A into B will transform Ak into Bk,
and those which transform A into C will transform Ak into Ck, so we get that Ak is row equivalent
to both Bk and Ck. Also, since B and C are in reduced row-echelon form, Bk and Ck are as well
since removing a column does not mess with any of the properties defining what it means for a
matrix to be in reduced row-echelon form. Hence by in the inductive hypothesis we conclude that
Bk = Ck.

Thus the first k columns of B and C are the same, so all that remains to be able to conclude
that B = C is to show that the final columns of B and C are the same. Suppose instead that
B ∕= C, so that the final columns of B and C are different. In particular, if we denote the entries
of B by bij , where bij is the entry in the i-th row and j-th column, and we denote the entries of C
similarly by cij , suppose that the i-th entries bi(k+1) and ci(k+1) in the final columns of B and C
respectively are different. For a visual aid, here is what our matrices thus look like:

Let

x =

󰀵

󰀹󰀷
x1
...

xk+1

󰀶

󰀺󰀸 ∈ Rk+1

be any solution to Bx = 0, and hence to Cx = 0 as well. The i-th entry of the equation Bx = 0
looks like

bi1x1 + · · ·+ bikxk + bi(k+1)xk+1 = 0

and the i-th entry of Cx = 0 says

ci1x1 + · · ·+ cikxk + ci(k+1)xk+1 = 0.

Since Bk = Ck we have bij = cij for all j = 1, . . . , k, so the equations above imply that

bi(k+1)xk+1 = ci(k+1)xk+1.

Since bi(k+1) ∕= ci(k+1), the only way this can be true is when xk+1 = 0. Thus any solution of
Bx = 0 or Cx = 0 must have xk+1 = 0, which says that xk+1 cannot be a free variable since it
can only have one specific value. Hence the columns to which xk+1 correspond must have pivots,
so the final columns of B and C contain a pivot.

Since B and C are in reduced row-echelon form, every other entry in these finals columns must
be zero, so the final columns of B and C have a 1 in one location and zeroes elsewhere. The rows
in which the pivots 1 occur must be rows where Bk and Ck contain all zeroes since otherwise the
1 in the final column would not be the first nonzero entry in that row:

31

But then the pivots 1 must occur in the same row for B as in C since otherwise one of these
matrices would have a row of all zeroes above a nonzero row, which is not possible if B and C are
in reduced row-echelon form. We conclude that the final columns of B and C are in fact the same,
so B = C, contradicting the assumption that B ∕= C. Thus B and C must have been the same all
along, so B = C and the proof is finished.

Corollary of the proof. Note that really the only key property we used in the proof is that is
that Bx = 0 and Cx = 0 are supposed to have the same solutions. Thus, what we have actually
shown is the following: if B and C are both in reduced row-echelon form and Bx = 0 and Cx = 0
have the same solutions, then B = C. This is really the main technical point to remember.

Lecture 10: Span and Linear Independence

Warm-Up 1. We show that if matrices A and B are row equivalent, then they have the same
reduced row-echelon form. This is one direction of Problem 2 on Homework 3.

If A and B are row equivalent, there is a sequence of row operations r1, . . . , rk which transform
A into B:

A → intermediate matrix → · · · → B.

There is also a sequence of row operations s1, . . . , sℓ which transform B into its reduced row-echelon
form rref(B):

B → · · · → rref(B).

Performing the operations r1, . . . , rk and then the operations s1, . . . , sℓ hence transform A into
rref(B):

A → · · · → B → · · · → rref(B).

Thus A is row equivalent to the matrix rref(B) in reduced row-echelon form, so by the uniqueness
of reduced row-echelon forms we must have rref(A) = rref(B) as claimed.

Warm-Up 2. We show that a system of linear equations Ax = b has a solution if and only if
rank(A) = rank(A | b), where (A | b) denotes the augmented matrix corresponding to the system
Ax = b. (Recall that the rank of a matrix is the number of pivots in its reduced row-echelon form.)

The key point is that when row-reducing the augmented matrix (A | b) to its reduced row-
echelon form, the “A” portion reduces to the reduced row-echelon form of A:

(A | b) → (rref A |?)

where “?” denotes the vector obtained by performing to b the same operations which transform A
into rref A. This system will thus have a solution as long as there is no row corresponding to an
equation of the form

0 = nonzero.

32

In order for this to occur, the “?” column would have to contain a pivot since its final entry would
be the first nonzero entry in the bottom row of the reduced matrix (rref A |?). If this final column
has a pivot, then there is one more pivot in this reduced augmented matrix than there is in rref A,
so rank(A | b) > rank(A) in this case.

Thus, Ax = b has a solution if and only if the reduced row-echelon form of (A | b) does not
have a row consisting of all zeroes and then a 1, which happens if and only if the final column is
does not have a pivot, which thus occurs if and only if the number of pivots in rref(A | b) is the
same as the number of pivots in rref A, which is the same as saying that rank(A) = rank(A | b).

Why is a plane a plane? Consider the equation 2x − y + 3z = 0 in R3. We have repeatedly
stated that such equations describes planes, but now we are the point at which we can ask: why
does this describe a plane? In other words, what is a good definition of “plane”? In this case we
can just have a computer sketch the set of all points satisfying 2x − y + 3z = 0 and see visually
that this appears to be a plane, but in math we strive for more precision that this.

The key observation is one which we have already seen: it is possible to find two vectors on this
plane such that any other point on it can be written as a linear combination of those two vectors.
Indeed, after solving for x, we see that any point on this plane must be of the form:

󰀵

󰀷
x
y
z

󰀶

󰀸 =

󰀵

󰀷
1
2y −

3
2z

y
z

󰀶

󰀸 = y

󰀵

󰀷
1/2
1
0

󰀶

󰀸+ z

󰀵

󰀷
−3/2
0
1

󰀶

󰀸 ,

so any point on this plane is a linear combination of
󰀵

󰀷
1/2
1
0

󰀶

󰀸 and

󰀵

󰀷
−3/2
0
1

󰀶

󰀸 .

We say that these vectors span the plane in question.

Span. The span of some given vectors v1, . . . ,vk ∈ Rn is the set of all linear combinations of those
vectors. We denote this span by span {v1, . . . ,vk}, so using set notation:

span {v1, . . . ,vk} = {a1v1 + · · ·+ akvk | a1, . . . , ak ∈ R}.

Back to planes. So, letting V denote the plane 2x− y + 3z, we could say

V = span

󰀻
󰀿

󰀽

󰀵

󰀷
1/2
1
0

󰀶

󰀸 ,

󰀵

󰀷
−3/2
0
1

󰀶

󰀸

󰀼
󰁀

󰀾 .

Perhaps it is the fact that V is spanned by two vectors which guarantees it is a plane? Almost—
there is one additional property these vectors have which guarantees their span will be a plane:
linear independence.

To see why this is needed, consider a line in R2 such as y + x = 0. In this case, any point on
the line can be written as 󰀗

x
y

󰀘
=

󰀗
x
−x

󰀘
= x

󰀗
1
−1

󰀘
,

so the line is spanned by a single vector. However, it is also true that any point on this line can be
written as 󰀗

x
−x

󰀘
= −x

󰀗
1
−1

󰀘
+ x

󰀗
2
−2

󰀘
,

33

so this line is also spanned by
󰀅

1
−1

󰀆
and

󰀅
2
−2

󰀆
. If we simply defined a plane as a space spanned by

two vectors, then this line would qualify as a plan as well, which is absurd.
However, the point is that since the second vector

󰀅
2
−2

󰀆
here is already a linear combination

(i.e. multiple) of the first vector
󰀅

1
−1

󰀆
, any linear combination of these two can be expressed as a

linear combination of the first alone:

a

󰀗
1
−1

󰀘
+ b

󰀗
2
−2

󰀘
= (a+ 2b)

󰀗
1
−1

󰀘
.

Thus, what makes V a plane is that it is spanned by two vectors, neither of which is a multiple
of the other. (Although, we’ll see next time that this still doesn’t give the most general notion of
“plane”.) The notion of linear independence makes this precise.

Linear dependence and independence. A collection of vectors v1, . . . ,vk ∈ Rn is linearly
dependent if one can be written as a linear combination of the others. This collection is linearly
independent if none is a linear combination of the others.

Remark about the book. Note that the book does not talk about linear dependence and
independence until Chapter 3, whereas we’re still essentially looking at material from Chapter 1.
You can check the end of Section 3.2, specifically the “Bases and Linear Independence” subsection,
to see the linear independence material, just keep in mind that we haven’t yet spoken about all the
concepts which show up there.

Removing dependent vectors does not change span. Here is a key property: if u ∈
span {v1, . . . ,vk}, then

span {v1, . . . ,vk,u} = span {v1, . . . ,vk} .
We actually saw this property previously in Lecture 5 on “Linear Combinations”, only we didn’t
phrase it in terms of spans. Check there to see the proof.

The point is that when we have linearly dependent vectors, it will always be possible to remove
one—namely one which is a linear combination of the others—without changing the overall span.
This is what is happening in the line example above:

󰀅
1
−1

󰀆
and

󰀅
2
−2

󰀆
are linearly dependent, so

throwing either away does not change the span.

Example. The general solution of the system Ax = 0 where

A =

󰀵

󰀷
0 1 2 0 −1
0 0 0 1 4
0 0 0 0 0

󰀶

󰀸

is given by 󰀵

󰀹󰀹󰀹󰀹󰀷

x1
x2
x3
x4
x5

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀷

x1
−2x3 + x5

x3
−4x5
x5

󰀶

󰀺󰀺󰀺󰀺󰀸
= x1

󰀵

󰀹󰀹󰀹󰀹󰀷

1
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
+ x3

󰀵

󰀹󰀹󰀹󰀹󰀷

0
−2
1
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
+ x5

󰀵

󰀹󰀹󰀹󰀹󰀷

0
1
0
−4
1

󰀶

󰀺󰀺󰀺󰀺󰀸
.

This the set of solutions is spanned by
󰀵

󰀹󰀹󰀹󰀹󰀷

1
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
,

󰀵

󰀹󰀹󰀹󰀹󰀷

0
−2
1
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
,

󰀵

󰀹󰀹󰀹󰀹󰀷

0
1
0
−4
1

󰀶

󰀺󰀺󰀺󰀺󰀸
.

34

The first vector here is not a linear combination of the other two since there is no way to obtain
the 1 in the first entry using the zeroes in the first entries of the other two vectors, the second is
not a linear combination of the other two because of the 1 as its third entry, and the third is not a
linear combination of the others because of the 1 in its fifth entry. Thus these vectors are linearly
independent.

Question to think about. The set of solutions of Ax = 0 above is spanned by three linearly
independent vectors—is it possible that there are two other linearly independent vectors which still
span the same set of solutions? We’ll come back to this later; the answer is no, but this is a deep
fact which will take some work to prove, and is related to problem of giving a precise meaning of
the word dimension.

Theorem. Given some vectors v1, . . . ,vk, checking to see if they are linearly dependent or inde-
pendent by checking one at-a-time whether each is a linear combination of the others is tedious
and time-consuming. However, we don’t need to do this, as we have the following way to check for
linear dependence/independence in one swing:

v1, . . . ,vk ∈ Rn are linearly dependent if and only if there are scalars a1, . . . , ak ∈ R,
at least one of which is zero, such that a1v1 + · · ·+ akvk = 0. Equivalently, v1, . . . ,vk

are linearly independent if the only way in which a1v1 + · · ·+ akvk = 0 can be true is
to have all scalars a1, . . . , ak equal zero.

This was actually on Homework 2, only we didn’t phrase using the terms linear “dependence” or
“independence”. Check the solutions to Problem 3 for a proof.

The upshot is that to check if vectors v1, . . . ,vk are linearly dependent or independent, we
simply solve a1v1 + · · · + akvk = 0 for the scalars a1, . . . , ak and see whether or not they all have
to be zero.

Proposition. Our final fact for today says that we can extend a linearly independent list to a
longer linearly independent list by throwing in a vector not in the span of the original vectors: if
v1, . . . ,vk ∈ Rn are linearly independent and u ∈ Rn is not in span {v1, . . . ,vk}, then v1, . . . ,vk,u
are linearly independent. This is essentially the “Example we didn’t do in class” from Lecture 5,
but let’s give a proof here for completeness.

Proof. Consider the equation
a1v1 + · · ·+ akvk + au = 0.

We can rewrite this as
−au = a1v1 + · · ·+ akvk.

If a ∕= 0, then dividing by a gives

u = −a1
a
v1 − · · ·− ak

a
vk,

which would mean that u is a linear combination of v1, . . . ,vk and so is in their span; since we are
assuming u is not in this span, we must have a = 0. But if a = 0 the equation we had previously
for au becomes

0 = a1v1 + · · ·+ akvk.

Since v1, . . . ,vk are linearly independent, the only way this equation can hold is to have a1 = · · · =
ak = 0. Thus the only way a1v1 + · · · + akvk + au = 0 can be true is to have all coefficients
a1 = · · · = ak = a = 0, so v1, . . . ,vk,u are linearly independent as claimed.

35

Lecture 11: Solutions of Linear Systems

Warm-Up 1. We find the value(s) of k for which the vectors

v1 =

󰀵

󰀷
1
−k
2

󰀶

󰀸 , v2 =

󰀵

󰀷
3

−2k − 2
k + 4

󰀶

󰀸 , v3 =

󰀵

󰀷
4

2− 4k
k + 10

󰀶

󰀸

are linearly independent. Thus, we must determine when

c1v1 + c2v2 + c3v3 = 0

has only the trivial solution c1 = c2 = c3 = 0. This vector equation is the same as the matrix
equation 󰀵

󰀷
1 3 4
−k −2k − 2 2− 4k
2 k + 4 k + 10

󰀶

󰀸

󰀵

󰀷
c1
c2
c3

󰀶

󰀸 =

󰀵

󰀷
0
0
0

󰀶

󰀸 ,

and reducing the augmented matrix gives

󰀵

󰀷
1 3 4 | 0
−k −2k − 2 2− 4k | 0
2 k + 4 k + 10 | 0

󰀶

󰀸 →

󰀵

󰀷
1 3 4 | 0
0 k − 2 2 | 0
0 0 k | 0

󰀶

󰀸 .

For k = 0 and k = 2, there are free variables, so there are infinitely many scalars satisfying

c1v1 + c2v2 + c3v3 = 0

in this case, and so v1,v2,v3 are linearly dependent for k = 0, 2. For k ∕= 0, 2, there are pivots in
each column so the only solution is c1 = c2 = c3 = 0 and the given vectors are linearly independent
in this case.

Warm-Up 2. We show that the complex vectors

󰀗
1
1

󰀘
,

󰀗
i
1

󰀘
,

󰀗
1
−i

󰀘

are linearly dependent over C, by which we mean that one can be written as a complex linear
combination of the others. Row reducing the augmented matrix

󰀗
1 i 1 | 0
1 1 −i | 0

󰀘

yields infinitely many solutions, which we know will be true without reducing given the fact that
there are more columns than rows, so there will be at least one free variable. In particular, one
possible solution gives

i

󰀗
1
1

󰀘
+

󰀗
i
1

󰀘
+ (1− i)

󰀗
1
−i

󰀘
=

󰀗
0
0

󰀘
,

and solving for one vector in terms of the rest expresses it as a complex linear combination of the
others.

However, we claim now that the given vectors are in fact linearly independent over R, which
means that it is not possible to express any vector as a real linear combination of the others, where

36

“real linear combination” means a linear combination involving real coefficients. Equivalently, the
only real scalars c1, c2, c3 ∈ R satisfying

c1

󰀗
1
1

󰀘
+ c2

󰀗
i
1

󰀘
+ c3

󰀗
1
−i

󰀘
=

󰀗
0
0

󰀘

are c1 = c2 = c3 = 0. Indeed, comparing first entries on both sides gives the requirement that

c1 + ic2 + c3 = 0,

and since c1, c3 are real this says that ic2 must be real as well, which it is not unless c2 = 0 since
c2 is real. Now that we know c2 = 0, comparing second entries gives

c1 − ic3 = 0,

which gives c1 = ic3, so c2 = c3 = 0 since otherwise we would have something real equaling
something not real. Since we must have c1 = c2 = c3 = 0, we conclude that the given vectors are
linearly independent over R.

Remark. We’ll see more later on about the distinction between being linearly independent over
C vs over R when we talk about abstract vector spaces.

Planes redux. Based on last time, can try to define a “plane” to be a space which is spanned by
two linearly independent vectors. However, consider the plane x + y + z = 1 in R3, or really any
plane which doesn’t pass through the origin. We ask: are there two vectors (linearly independent
or not) which span this plane?

The answer is no. For one reason, the span of any vectors will always contain the zero vector, so
if we did have that the plane x+y+z = 1 was equal to span {v1,v2} then this plane would have to
pass through the origin, which it doesn’t. For another reason, note that any span has the property
that adding two vectors in it results in another vector in the span. In particular, if u = av1 + bv2

and w = cv1 + dv2 are both in span {v1,v2}, we have:

u+w = (av1 + bv2) + (cv1 + dv2) = (a+ c)v1 + (b+ d)c2,

which is also a linear combination of v1 and v2 and so is in span {v1v2}. However, adding two
points on the plane x + y + z = 1 does not give another point on the plane: (1, 0, 0) and (0, 1, 0)
are both on this plane but their sum (1, 1, 0) is not.

Thus, a “space spanned by two linearly independent vectors” is not an appropriate character-
ization of a plane since it doesn’t account for planes which don’t pass through the origin. To fix
this we must better understand the relation between equations of the form Ax = 0 and those of
the form Ax = b.

Homogeneous equations. A linear system of the form Ax = 0 is called a homogeneous sys-
tem. There are two key properties of such systems: their set of solutions are “closed under linear
combinations”, and their set of solutions can be described as spans.

To say that the set of solutions is closed under linear combinations means that any linear
combination of solutions is still a solution. Indeed, suppose that x1, . . . ,xk are solutions of Ax = 0
and that c1, . . . , ck are any scalars. Then

A(c1x1 + · · ·+ ckxk) = A(c1x1) + · · ·+A(ckxk) = c1Ax1 + · · ·+ ckAxk = c10+ · · ·+ ck0 = 0,

37

so c1x1 + · · · + ckxk is also a solution of Ax = 0. As for the fact that the set of solutions can be
described as a span, this follows from the usual way we solve linear systems using Gauss-Jordan
elimination: after expressing the pivot variables in terms of the free variables and then “factoring
out” the free variables, we’re left with a linear combination expression which describes every possible
solution.

Remark. Above we used the fact that the following distributive property holds:

A(x+ y) = Ax+Ay

where A is a matrix and x,y are vectors. Of course such a property should hold if we expect
matrix multiplication to behave like other types of multiplication we’re used to, but it is important
to realize why this works.

We could compute both sides of the above equation to verify that we get the same answer, but
actually I claim we’ve already essentially done this. Denoting the columns of A by

A =
󰀅
v1 v2 · · · vn

󰀆
,

recall that a product Ax can be written as a linear combination of the columns of A using the
entries of x as coefficients. Thus, denoting the entries of x by xi and those of y by yi, we have:

A(x+ y) = (x1 + y1)v1 + · · ·+ (xn + yn)vn

and
Ax+Ay = (x1v1 + · · ·+ xnvn) + (y1v1 + · · ·+ ynvn).

Thus the fact that these two expressions are equal comes down to the distributive property

(xi + yi)vi = xivi + yivi

of scalar multiplication.
Similarly, the fact we also used above that for a scalar c we have

A(cx) = cAx

reflects the property (cxi)vi = c(xivi) of scalar multiplication.

Inhomogeneous equations. A linear system of the form Ax = b where b ∕= 0 is called an
inhomogeneous system. In this case, the set of solutions it not closed under arbitrary linear com-
binations, it is only closed under affine combinations.

Indeed, suppose that x1, . . . ,xk are solutions of Ax = b where b ∕= 0. First, if c1, . . . , ck are
scalars such that c1 + · · ·+ ck = 1, then

A(c1x1 + · · ·+ ckxk) = c1Ax1 + · · ·+ ckAxk = c1b+ · · ·+ ckb = (c1 + · · ·+ ck)b = b,

so the affine combination c1x1+· · ·+ckxk is also a solution of Ax = b. Conversely, if c1x1+· · ·+ckxk

is also a solution, from above we get the requirement that

(c1 + · · ·+ ck)b = b,

which since b ∕= 0 requires that c1+· · ·+ck = 1. This says that the only types of linear combination
which still yields a solution are the affine ones.

38

Theorem. Finally we state the relation between solutions of homogeneous and inhomogeneous
equations. Suppose that x0 is a solution of the inhomogeneous equation Ax = b. Then any solution
of this inhomogeneous equation is of the form

x0 + y

where y is a solution of the corresponding homogeneous equation Ax = 0. In other words, trans-
lating the solutions of Ax = 0 by a particular solution of Ax = b yields all solutions of Ax = b.
We’ll prove this result next time as our Warm-Up.

Lecture 12: Linear Transformations

Warm-Up. We prove the result we stated at the end of last time: if x0 is a solution of the
inhomogeneous equation Ax = b, then any solution of Ax = b is of the form

x0 + y

where y is a solution of the homogeneous equation Ax = 0. Note that any such expression is a
solution of Ax = b since

A(x0 + y) = Ax0 +Ay = b+ 0 = b,

but the claim here is that all solutions of Ax = b arise in this way. (This is why this fact is almost
but not quite what was proved in Problem 7 of Homework 3.)

Let x1 be any solution of Ax = b. If we want to express this as

x1 = x0 + y,

note that there is only one possible thing which y could be: namely y = x1 − x0. The only thing
to check is that this y is in fact a solution of Ax = 0, which it is since

A(x1 − x0) = Ax1 −Ax0 = b− b = 0.

(This was proved in Problem 7 of Homework 3.) Thus, to summarize,

x1 = x0 + (x1 − x0)

indeed expresses the arbitrary solution x1 of Ax = b as x0 plus a solution of Ax = 0.

The structure of solutions of linear systems. We’ve actually already seen the fact above in
action, although we didn’t explicitly point it out until now. For instance, consider again the plane
x+ y + z = 1. Points on this plane can be written as

󰀵

󰀷
x
y
z

󰀶

󰀸 =

󰀵

󰀷
1− y − z

y
z

󰀶

󰀸 =

󰀵

󰀷
1
0
0

󰀶

󰀸+ y

󰀵

󰀷
−1
1
0

󰀶

󰀸+ z

󰀵

󰀷
−1
0
1

󰀶

󰀸

󰁿 󰁾󰁽 󰂀
point on x+y+z=0

,

where the first term is a specific point on the given plane, while the linear combination portion
gives all possible points on the corresponding homogeneous equation x + y + z = 0. Thus we can
now give a true definition of a “plane”: a plane in Rn is a set of vectors which can be expressed as

x0 + c1v1 + c2v2

39

where x0 is some specific point and v1,v2 are linearly independent. In other words, we take the
plane spanned by v1 and v2 and then translate it by adding x0 to all points. We’ll come back to
this definition later when we talk about the more general notion of an affine subspace of Rn.

Similarly, consider the linear system Ax = b with augmented matrix:

󰀵

󰀷
0 1 2 0 3 | 1
0 0 0 1 4 | −2
0 0 0 0 0 | 0

󰀶

󰀸 .

The solutions are given by

󰀵

󰀹󰀹󰀹󰀹󰀷

x1
x2
x3
x4
x5

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀷

x1
−2x3 − 3x5 + 1

x3
−4x5 − 2

x5

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀷

0
1
0
−2
0

󰀶

󰀺󰀺󰀺󰀺󰀸
+ x1

󰀵

󰀹󰀹󰀹󰀹󰀷

1
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
+ x3

󰀵

󰀹󰀹󰀹󰀹󰀷

0
−2
1
0
0

󰀶

󰀺󰀺󰀺󰀺󰀸
+ x5

󰀵

󰀹󰀹󰀹󰀹󰀷

0
−3
0
−4
1

󰀶

󰀺󰀺󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
solution of Ax=0

,

where again we have a particular solution of Ax = b plus an arbitrary solution of Ax = 0.
So, to sum up pretty much everything we’ve done these first few weeks, here are the key

takeaways:

1. Solutions of an inhomogeneous system Ax = b are given by adding to a particular solution
arbitrary solutions of the corresponding homogeneous system Ax = 0,

2. Given a homogeneous system Ax = 0, linearly independent vectors can be found which span
the set of all solutions.

If you look back through examples and homework problems from the first few weeks, you’ll no
doubt notice that many of them were actually just special cases of these key facts.

Linear transformations. A function T : Rn → Rm is called a linear transformation if it has the
following properties:

• T (x+ y) = T (x) + T (y) for all x,y ∈ Rn, and

• T (cx) = cT (x) for all x ∈ Rn and c ∈ R.

We refer to the first property as “preservation of addition” and the second as “preservation of
scalar multiplication”. The main examples are so-called matrix transformations, which are those
functions given by a formula of the form

T (x) = Ax

where A is an m× n matrix. In fact, the most basic fact about linear transformations is that they
are always induced by a matrix in this way, so that every linear transformation is in fact a matrix
transformation. We’ll prove this next time.

Remark. At least for now, much of the material we’ll see regarding linear transformations is the
same as that in the book or as what is covered in Math 290. For this reason, I’ll won’t include
everything we talk about in class in these notes, but will instead suggest you check my old Math
290 notes (and the book) for completeness. In particular, the “rotation by 90◦” example we looked

40

at in class can be found in my Math 290 notes, as well as some other examples we looked at of
transformations which are/aren’t linear.

In addition, and as I also mention in my Math 290 notes, note that the book’s definition of
“linear transformation” is different from ours: the book defines a linear transformation to be one
which is induced by a matrix, and then later shows that this is equivalent to the requirements that
T (x + y) = T (x) + T (y) and T (cx) = cT (x). The approach we’re taking is much more common,
and is the only definition which also makes sense in the infinite-dimensional setting, which we’ll
talk about soon enough.

Affine transformations. Here is one thing not covered in the book nor in my Math 290 notes.
Consider the function f : R → R given by

f(x) = x+ 1.

This function is not linear according to our definition since

f(x+ y) = (x+ y) + 1 and f(x) + f(y) = (x+ 1) + (y + 1) = x+ y + 2

are not the same. This might seem strange: the graph of f is the line y = x + 1, which we do
normally think of as being a “linear” thing, and yet here we’re saying that f is not linear.

If f is not a linear transformation, then what is it? The answer is that such a map is an affine
transformation, which (using SAT analogies) are to linear transformations what affine combinations
are to linear combinations. I’ll save the definition of “affine transformation” for the homework,
where you’ll be asked to show that they are all of form “something linear plus a constant”.

Lecture 13: More on Linear Transformations

Induction is everywhere. Let’s point out a minor point which is important to realize nonetheless.
Last time we mentioned that linear transformations “preserve linear combinations”, in the sense
that

T (c1v1 + · · ·+ ckvk) = c1T (v1) + · · ·+ ckT (vk),

which comes from first breaking up the sum as

T (c1v1 + · · ·+ ckvk) = T (c1v1) + · · ·+ T (ckvk)

and then using the fact that T preserves scalar multiplication to pull each scalar out.
However, technically this above “breaking up the sum” property is not quite what we gave as

the “preservation of addition” property of linear transformations, since in the definition we only
required that this could be done for a sum of two things and not k things in general. But the point
is that requiring this property for only a sum of two things does imply it holds for any number of
things as a result of induction—namely the type of induction where we use the base case in the
induction step. This is all hidden in the “· · · ” showing up in the above expressions, and is not
something we’ll go through the trouble of proving every single time. The upshot is that whenever
we do something using “· · · ”, keep in mind that there might be some induction hidden in there.

Warm-Up 1. Let T : R2 → R2 be the transformation which rotates a vector by an angle θ
around the origin. (We are using the word “transformation” here just to mean “function”, so that
“transformation” by itself does not necessarily mean “linear transformation”.) We show that T is

41

linear. (Saying that T is “linear” is just a shorthand way of saying that it is a linear transformation.)
We do this purely using some geometry, although there are algebraic ways of seeing this as well.

Given two vectors x,y ∈ R, we must first show that T (x + y) = T (x) + T (y). Let’s be clear
about what this is actually saying: on the left we first add x and y and then rotate the resulting
vector by θ around the origin, whereas on the left we first rotate each of x and y separately and
then add the results—the claim is that we end up with the same result either way. We use the
following picture as guides, with various angles drawn in:

The claim is that rotating the vector x + y drawn on the left by θ results in the vector Tx + Ty
drawn on the right. To justify this, we only need to justify that the parallelogram on the left
produces the parallelogram on the right after rotation. All we need are the following properties
of rotations: they “preserve” the angle between two vectors and they “preserve” length, meaning
that the angle between two vectors is the same after rotation as it is before, and that the length
of a vector is the same after rotation as it is before. (Later we’ll use these ideas to give a precise
definition of “rotation”.)

Consider the triangles with vertices 0, (the endpoint of) x, and (the endpoint of)y in the first
picture and 0, Tx, Ty in the second. These triangles are congruent since two of their sides have
the same length (Tx has the same length as x and Ty has the same length as y) and the included
angles have the same measure γ + α. But in the first picture, the triangle with vertices 0,x,y is
congruent to the one with verticies x,y,x+y since these two triangles split the given parallelogram
in half. Similarly, in the second picture the triangle with vertices 0, Tx, Ty is congruent to the one
with vertices Tx, Ty, Tx+Ty, so we conclude that all four triangles thus mentioned are congruent.
This implies that the two parallelograms are congruent, so the one on the right is indeed obtained
by rotating the one on the left. Hence the diagonal Tx+Ty of the second parallelogram is T (x+y),
so T preserves addition as claimed.

Next we must show that T (cx) = cT (x) for any scalar c ∈ R. Again, to be clear, the left side
is the result of first scaling x by c and then rotating the result, while the right side is the result of
first rotating x and then scaling the result by c. Consider the picture:

42

Take the triangle with vertices 0,x, Tx and the one with vertices 0, cx, T (cx). These triangles
share a common angle θ and are each isosceles since x, Tx have the same length and cx, T (cx) have
the same length. Hence they are similar, so since one of edge of the larger triangle is obtained by
scaling x by c, the other edge must also be obtained by scaling Tx by c, so cTx = T (cx). Hence
T preserves scalar multiplication, so it is linear.

Warm-Up 2. Suppose that T : Rn → Rm is a linear transformation. We show that T (0) = 0, so
that any linear transformation must send the zero vector to the zero vector. If we make use of the
fact we’ll prove next that linear transformations are always induced by matrices, this is just the
statement that A0 = 0 for any matrix A. However, we want an argument works without making
use of this fact, since, as mentioned last time, at some point we’ll run into settings where it is not
true that linear transformations are always matrix transformations.

Here are two approaches. First, since 0 ·0 = 0 (scalar zero times zero vector equals zero vector)
and T preserves scalar multiplication, we have

T (0) = T (0 · 0) = 0 · T (0) = 0

since 0v = 0 for any vector v. Second, since 0+ 0 = 0 and T preserves addition, we have

T (0) = T (0+ 0) = T (0) + T (0).

Whatever T (0) is, it has an additive inverse, and adding this inverse (i.e. subtracting T (0)) to
both sides gives

0 = T (0)

as claimed. Since we only used the linearity properties of T and not the fact that it is given by a
matrix, these same proofs will work in the more general settings we’ll come too.

Theorem. Let T : Rn → Rm be a linear transformation. Then the fact is that there exists an
m×n matrix A such that T (x) = Ax for all x ∈ Rn, so that every linear transformation is a matrix
transformation. The proof makes use of some key ideas we’ve seen previously: writing a vector
as a linear combination of other vectors, and recognizing that linear combination expresses can be
written in terms of matrix products.

Proof. Denote the entries of x ∈ Rn by

x =

󰀵

󰀹󰀹󰀹󰀷

x1
x2
...
xn

󰀶

󰀺󰀺󰀺󰀸
.

43

Then

x =

󰀵

󰀹󰀹󰀹󰀷

x1
x2
...
xn

󰀶

󰀺󰀺󰀺󰀸
= x1

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
+ x2

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
+ · · ·+ xn

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸
.

Since T is linear, we have:

T (x) = T

󰀳

󰁅󰁅󰁅󰁃
x1

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
+ x2

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
+ · · ·+ xn

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸

󰀴

󰁆󰁆󰁆󰁄

= x1T

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
+ x2T

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
+ · · ·+ xnT

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀷
T

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
T

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
· · · T

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸

󰀶

󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀷

x1
x2
...
xn

󰀶

󰀺󰀺󰀺󰀸

=

󰀵

󰀹󰀹󰀹󰀷
T

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
T

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
· · · T

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸

󰀶

󰀺󰀺󰀺󰀸
x

where in the third line we have used the fact that a product Ax where A is a matrix can be written
as a linear combination of the columns of A with coefficients the entries of x. Thus for the m× n
matrix

A =

󰀵

󰀹󰀹󰀹󰀷
T

󰀵

󰀹󰀹󰀹󰀷

1
0
...
0

󰀶

󰀺󰀺󰀺󰀸
T

󰀵

󰀹󰀹󰀹󰀷

0
1
...
0

󰀶

󰀺󰀺󰀺󰀸
· · · T

󰀵

󰀹󰀹󰀹󰀷

0
0
...
1

󰀶

󰀺󰀺󰀺󰀸

󰀶

󰀺󰀺󰀺󰀸

we indeed have T (x) = Ax for all x ∈ Rn, so T is a matrix transformation.

Remark. The matrix derived above is called the standard matrix of T . The vectors consisting of
1’s and 0’s used above are important enough that we’ll give them special names: ei ∈ Rn denotes
the vector with a 1 in the i-th position and zeroes elsewhere, so the standard matrix of T has
columns T (e1), . . . , T (en). Thus, to find the standard matrix of any linear transformation (i.e. the
matrix so that multiplying by that matrix has the same affect as applying the transformation), we
simply apply T to the special vectors e1, . . . , en and use the results as columns.

Rotations. Let T : R2 → R2 be the transformation which rotates R2 by an angle θ about the
origin. Since this is linear (as we saw in the Warm-Up), it must be induced by some matrix A.
Rotating [10] by θ gives

󰀅
cos θ
sin θ

󰀆
while rotating [01] gives

󰀅− sin θ
cos θ

󰀆
, so

T

󰀗
1
0

󰀘
=

󰀗
cos θ
sin θ

󰀘
and T

󰀗
0
1

󰀘
=

󰀗
− sin θ
cos θ

󰀘
.

44

(Check the book or my Math 290 lecture notes to see why these are correct.) Thus the standard
matrix of T is

A =

󰀗
T

󰀗
1
0

󰀘
T

󰀗
0
1

󰀘󰀘
=

󰀗
cos θ − sin θ
sin θ cos θ

󰀘
,

meaning that multiplying a vector by this matrix has the same effect as rotating it by θ around
the origin.

Other geometric things. There are many other geometric transformations which can be de-
scribed in terms of matrices. In particular, our book goes through a description of orthogonal
projections, reflections, scalings, and shears. We’ll make use of these from time to time, and I’ll
ask that you read Section 2.2 in the book and my old 290 notes to understand what these trans-
formations are.

Example. Suppose that T : R2 → R2 is a linear transformation such that

T

󰀗
1
1

󰀘
=

󰀗
2
−1

󰀘
and T

󰀗
0
3

󰀘
=

󰀗
−1
3

󰀘
.

From this information alone we determine the standard matrix of T .
For instance, by the linearity of T we have

󰀗
−1
3

󰀘
= T

󰀗
0
3

󰀘
= 3T

󰀗
0
1

󰀘
,

so

T

󰀗
0
1

󰀘
=

1

3

󰀗
−1
3

󰀘
=

󰀗
−1/3
1

󰀘
.

Then since 󰀗
1
0

󰀘
=

󰀗
1
1

󰀘
−

󰀗
0
1

󰀘
,

the linearity of T gives

T

󰀗
1
0

󰀘
= T

󰀗
1
1

󰀘
− T

󰀗
0
1

󰀘
=

󰀗
2
−1

󰀘
−

󰀗
−1/3
1

󰀘
=

󰀗
7/3
−2

󰀘
.

The values of T [10] and T [01] give the columns of the standard matrix of T , so the standard matrix
is 󰀗

7/3 −1/3
−2 1

󰀘
.

Thus T is defined explicitly by

T (x) =

󰀗
7/3 −1/3
−2 1

󰀘
x.

You can check that this indeed satisfies T [11] =
󰀅

2
−1

󰀆
and [03] =

󰀅−1
3

󰀆
.

Remark. The point of the example above is the following: knowing only two pieces of information
determined T completely. In general, for a linear transformation T : Rn → Rm, knowing n pieces
of information—namely the values of T (e1), . . . , T (en)—is enough to fully determine the behavior
of T . This is what is special about linear transformations, and we’ll see how to put this fact to
great use.

45

Linear over C vs over R. The definition of a linear transformation works just as well when
considering spaces consisting of complex vectors: a function T : Cn → Cm is a (complex) linear
transformation if

T (x+ y) = T (x) + T (y) and T (ax) = aT (x) for all x,y ∈ Cn and a ∈ C.

Here, Cn denotes the space of complex vectors with n complex entries.
For instance, the function T : C2 → C2 defined by

T

󰀗
z
w

󰀘
=

󰀗
−iz + w
2z + 3iw

󰀘
=

󰀗
−i 1
2 −3i

󰀘 󰀗
z
w

󰀘

is linear. (Indeed, this is a complex matrix transformation, and is linear for the same reason real
matrix transformations are.) In this setting it is also true that any complex linear transformation
Cn → Cm is induced by an m× n complex matrix.

However, consider the function f : C → C defined by

f(a+ ib) = b where a, b ∈ R,

so f is the function which outputs the imaginary part of a complex number. This satisfies T (z+w) =
T (z) + T (w), so it preserves addition. But note that

f(i(a+ ib)) = f(−b+ ia) = a whereas if(a+ ib) = ib,

so f(iz) ∕= if(z). Thus f does not preserve complex scalar multiplication, so it is not complex
linear. However, if we restrict the types of scalars we consider to only real numbers, we do indeed
have

f(c(a+ ib)) = f(ca+ icb) = cb = cf(a+ ib) for c ∈ R.

Hence the “preservation of scalar multiplication” property does hold for real scalars, even though it
does not hold for arbitrary complex scalars. Because of this we, we would say that f is real linear
but not complex linear, or that it is linear over R but not linear over C.

We’ll see more on the distinction between linear over R vs over C later when we discuss linear
transformations in a more general setting.

Lecture 14: Yet More on Linear Transformations

Today we spent 15 minutes going over Quiz 3, then 20 or so minutes on the Warm-Up, and finally
a little less than 10 minutes on compositions of linear transformations. Here I’ll only include the
Warm-Up in all its glory and save the material on compositions for Friday’s lecture notes, where it
fits in better.

The point of the Warm-Up, and hence of this lecture, is to further delve into the idea that
linear transformations are completely determined by a finite amount of data, only now we’ll amend
this to say a finite amount of “linearly independent” data. This Warm-Up is WAY too long for an
exam, and probably too difficult as well, but I strongly suggest you go through and understand it
well since it really illustrates some important concepts.

Warm-Up. For k = 0, 1, 2, we determine how many linear transformations T : R3 → R2 there are
which satisfy the following properties:

T

󰀵

󰀷
k
k2

1

󰀶

󰀸 =

󰀗
1
2

󰀘
, T

󰀵

󰀷
2k
4k
k

󰀶

󰀸 =

󰀗
k
−k

󰀘
, T

󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘
.

46

First, consider k = 2. Then the requirements are:

T

󰀵

󰀷
2
4
1

󰀶

󰀸 =

󰀗
1
2

󰀘
, T

󰀵

󰀷
4
8
2

󰀶

󰀸 =

󰀗
2
−2

󰀘
, T

󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘
.

However, since T is supposed to be linear, we should have:

T

󰀵

󰀷
4
8
2

󰀶

󰀸 = T

󰀳

󰁃2

󰀵

󰀷
2
4
1

󰀶

󰀸

󰀴

󰁄 = 2T

󰀵

󰀷
2
4
1

󰀶

󰀸 = 2

󰀗
1
2

󰀘
=

󰀗
2
4

󰀘
,

which does not agree with the second requirement. Thus we conclude that there are no such linear
transformations when k = 2.

k = 1 case. Now consider k = 1. The requirements become:

T

󰀵

󰀷
1
1
1

󰀶

󰀸 =

󰀗
1
2

󰀘
, T

󰀵

󰀷
2
4
1

󰀶

󰀸 =

󰀗
1
−1

󰀘
, T

󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘
.

So far there is no immediate way to see why such a T could not exist, as we had in the k = 2 case.
To find such a T , we find its standard matrix by computing

T

󰀵

󰀷
1
0
0

󰀶

󰀸 , T

󰀵

󰀷
0
1
0

󰀶

󰀸 , and T

󰀵

󰀷
0
0
1

󰀶

󰀸 .

To compute each of these, we try to write each ei as a linear combination of the three vectors on
which we know how T behaves:

ei = c1

󰀵

󰀷
1
1
1

󰀶

󰀸+ c2

󰀵

󰀷
2
4
1

󰀶

󰀸+ c3

󰀵

󰀷
1
2
3

󰀶

󰀸 .

The point is that, if we can do this, the linearity of T will give

T (ei) = c1T

󰀵

󰀷
1
1
1

󰀶

󰀸+ c2T

󰀵

󰀷
2
4
1

󰀶

󰀸+ c3T

󰀵

󰀷
1
2
3

󰀶

󰀸 ,

which we will be able to compute since we are given the three outputs needed here.
First we solve 󰀵

󰀷
1
0
0

󰀶

󰀸 = c1

󰀵

󰀷
1
1
1

󰀶

󰀸+ c2

󰀵

󰀷
2
4
1

󰀶

󰀸+ c3

󰀵

󰀷
1
2
3

󰀶

󰀸

for c1, c2, c3. Reducing the corresponding augmented matrix gives

󰀵

󰀷
1 2 1 | 1
1 4 2 | 0
1 1 3 | 0

󰀶

󰀸 →

󰀵

󰀷
1 0 0 | 2
0 1 0 | −1/5
0 0 1 | −3/5

󰀶

󰀸 ,

47

so c1 = 2, c2 = −1
5 , c3 = −3

5 . Thus

󰀵

󰀷
1
0
0

󰀶

󰀸 = 2

󰀵

󰀷
1
1
1

󰀶

󰀸− 1

5

󰀵

󰀷
2
4
1

󰀶

󰀸− 3

5

󰀵

󰀷
1
2
3

󰀶

󰀸 ,

so

T

󰀵

󰀷
1
0
0

󰀶

󰀸 = 2T

󰀵

󰀷
1
1
1

󰀶

󰀸− 1

5
T

󰀵

󰀷
2
4
1

󰀶

󰀸− 3

5
T

󰀵

󰀷
1
2
3

󰀶

󰀸

= 2

󰀗
1
2

󰀘
− 1

5

󰀗
1
−1

󰀘
− 3

5

󰀗
1
1

󰀘

=

󰀗
6/5
18/5

󰀘
,

which gives the first column of the standard matrix of T .
Note that in the course of solving the required linear system above we saw that

󰀵

󰀷
1 2 1
1 4 2
1 1 3

󰀶

󰀸 →

󰀵

󰀷
1 0 0
0 1 0
0 0 1

󰀶

󰀸 ,

which implies that the vectors 󰀵

󰀷
1
1
1

󰀶

󰀸 ,

󰀵

󰀷
2
4
1

󰀶

󰀸 ,

󰀵

󰀷
1
2
3

󰀶

󰀸

are linearly independent. Since these are three linearly independent vectors in R3, they must
span R3, which is how we know that not only e1 but e2 and e3 as well are expressible as linear
combinations of them. We’ll use this in a bit to explicitly compute T (e2) and T (e3) in a manner
similar to that above, but let us point the following out now: we now know that there will be a
linear transformation T satisfying the required properties, and moreover that there is only one!
Indeed, we already that T (e1) could only have one possible value, and similarly T (e2) and T (e3)
have only one possible value each, so the standard matrix of T will be completely determined.

The main point. The overarching point here is that since the given vectors are linearly indepen-
dent, there can be no trouble arising as in the k = 2 case since the only possible such trouble comes
from the fact that linear transformations should satisfy

T (c1x1 + · · ·+ ckxk) = c1T (x1) + · · ·+ ckT (xk),

which gives restrictions whenever some input vector is a linear combination of others. Since that is
not the case in the k = 1 case, there are no restrictions beyond the three stipulated in the problem
itself.

This is what we mean by saying that T is completely determined by a finite amount of “linearly
independent” data—in this case three pieces of linearly independent data. What will happen in
the k = 0 case, which we’ll look at soon, is that the given requirements will actually only give two
pieces of linearly independent data, meaning that there will be such a linear transformation but it
won’t be uniquely determined, so there will be infinitely many possible such transformations.

48

Back to the k = 1 case. To compute T (e2), we reduce:
󰀵

󰀷
1 2 1 | 0
1 4 2 | 1
1 1 3 | 0

󰀶

󰀸 →

󰀵

󰀷
1 0 0 | −1
0 1 0 | 2/5
0 0 1 | 1/5

󰀶

󰀸 ,

which gives 󰀵

󰀷
0
1
0

󰀶

󰀸 = −1

󰀵

󰀷
1
1
1

󰀶

󰀸+
2

5

󰀵

󰀷
2
4
1

󰀶

󰀸+
1

5

󰀵

󰀷
1
2
3

󰀶

󰀸 .

Thus

T

󰀵

󰀷
0
1
0

󰀶

󰀸 = −T

󰀵

󰀷
1
1
1

󰀶

󰀸+
2

5
T

󰀵

󰀷
2
4
1

󰀶

󰀸+
1

5
T

󰀵

󰀷
1
2
3

󰀶

󰀸

= −
󰀗
1
2

󰀘
+

2

5

󰀗
1
−1

󰀘
+

1

5

󰀗
1
1

󰀘

=

󰀗
−2/5
−11/5

󰀘
,

which gives the second column of the standard matrix of T . Finally, to compute T (e3) we reduce:
󰀵

󰀷
1 2 1 | 0
1 4 2 | 0
1 1 3 | 1

󰀶

󰀸 →

󰀵

󰀷
1 0 0 | 0
0 1 0 | −1/5
0 0 1 | 2/5

󰀶

󰀸 ,

so 󰀵

󰀷
0
0
1

󰀶

󰀸 = 0

󰀵

󰀷
1
1
1

󰀶

󰀸− 1

5

󰀵

󰀷
2
4
1

󰀶

󰀸+
2

5

󰀵

󰀷
1
2
3

󰀶

󰀸 ,

and thus

T

󰀵

󰀷
0
1
0

󰀶

󰀸 = 0T

󰀵

󰀷
1
1
1

󰀶

󰀸− 1

5
T

󰀵

󰀷
2
4
1

󰀶

󰀸+
2

5
T

󰀵

󰀷
1
2
3

󰀶

󰀸

= −1

5

󰀗
1
−1

󰀘
+

2

5

󰀗
1
1

󰀘

=

󰀗
1/5
3/5

󰀘

is the third column of the standard matrix of T .
We conclude that when k = 1, there is only one linear transformation satisfying the given

requirements that it is explicitly given by

T (x) =

󰀗
6/5 −2/5 1/5
18/5 −11/5 3/5

󰀘
x for x ∈ R3.

As a sanity check, go ahead and verify that this matrix indeed satisfies

󰀗
6/5 −2/5 1/5
18/5 −11/5 3/5

󰀘󰀵

󰀷
1
1
1

󰀶

󰀸 =

󰀗
1
2

󰀘
,

󰀗
6/5 −2/5 1/5
18/5 −11/5 3/5

󰀘󰀵

󰀷
2
4
1

󰀶

󰀸 =

󰀗
1
−1

󰀘
,

49

and
󰀗
6/5 −2/5 1/5
18/5 −11/5 3/5

󰀘󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘

as required in the k = 1 case.

k = 0 case. Finally we consider k = 0. The requirements become

T

󰀵

󰀷
0
0
1

󰀶

󰀸 =

󰀗
1
2

󰀘
, T

󰀵

󰀷
0
0
0

󰀶

󰀸 =

󰀗
0
0

󰀘
, T

󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘
.

There are no impossibilities arising from these conditions; in particular, the second condition is
satisfied by any linear transformation T : R3 → R2. However, the three given inputs are linearly
dependent since the second input can be written as a linear combination of the other two. Indeed,
the fact that

T

󰀵

󰀷
0
0
0

󰀶

󰀸 =

󰀗
0
0

󰀘
,

apart from being satisfied by any linear T , can also be derived from either of the other two conditions
by writing 󰀵

󰀷
0
0
0

󰀶

󰀸 = 0

󰀵

󰀷
0
0
1

󰀶

󰀸+ 0

󰀵

󰀷
1
2
3

󰀶

󰀸

and using the linearity of T . Thus we only have two “linearly independent” pieces of data:

T

󰀵

󰀷
0
0
1

󰀶

󰀸 =

󰀗
1
2

󰀘
and T

󰀵

󰀷
1
2
3

󰀶

󰀸 =

󰀗
1
1

󰀘
.

We claim that in this case there are infinitely many linear transformations satisfying these given
requirements. Indeed, the given vectors cannot span all of R3, so there are vectors in R3 which are
in the span of these two; denote such a vector by b ∈ R3. Since the two given inputs are linearly
independent, we will then have that 󰀵

󰀷
0
0
1

󰀶

󰀸 ,

󰀵

󰀷
1
2
3

󰀶

󰀸 , b

are linearly independent. Since these are three linearly independent vectors in R3, they must
actually span R3 so every vector, in particular each ei, can be written as a linear combination of
each. Writing each ei as

ei = c1

󰀵

󰀷
0
0
1

󰀶

󰀸+ c2

󰀵

󰀷
1
2
3

󰀶

󰀸+ c3b

will then allow us to compute T (ei) using

T (ei) = c1T

󰀵

󰀷
0
0
1

󰀶

󰀸+ c2T

󰀵

󰀷
1
2
3

󰀶

󰀸+ c3T (b).

50

(In particular note that e3 is already the first of the given input vectors, so only really need to
compute T (e1) and T (e2).)

However, we have no information given as to what T (b) could be, and since b is linearly
independent from the given input vectors, there will be no restrictions on T (b) whatsoever! Each
possible value of T (b) will give a different value for T (e1) and T (e2), which is why we will have
infinitely many linear transformations satisfying the given conditions in this case.

To take a concrete example, take b to be the vector

b =

󰀵

󰀷
1
0
0

󰀶

󰀸 .

You can check that 󰀵

󰀷
0
0
1

󰀶

󰀸 ,

󰀵

󰀷
1
2
3

󰀶

󰀸 ,

󰀵

󰀷
1
0
0

󰀶

󰀸

are indeed linearly independent. Solving

e2 = c1

󰀵

󰀷
0
0
1

󰀶

󰀸+ c2

󰀵

󰀷
1
2
3

󰀶

󰀸+ c3

󰀵

󰀷
1
0
0

󰀶

󰀸

for c1, c2, c3 will give: 󰀵

󰀷
0
1
0

󰀶

󰀸 = −3

2

󰀵

󰀷
0
0
1

󰀶

󰀸+
1

2

󰀵

󰀷
1
2
3

󰀶

󰀸− 1

2

󰀵

󰀷
1
0
0

󰀶

󰀸 .

Thus, recalling that there are no restrictions on what T (b) can be, if

T

󰀵

󰀷
1
0
0

󰀶

󰀸 =

󰀗
a
b

󰀘
,

then

T

󰀵

󰀷
0
1
0

󰀶

󰀸 = −3

2
T

󰀵

󰀷
0
0
1

󰀶

󰀸+
1

2
T

󰀵

󰀷
1
2
3

󰀶

󰀸− 1

2
T

󰀵

󰀷
1
0
0

󰀶

󰀸

= −3

2

󰀗
1
2

󰀘
+

1

2

󰀗
1
1

󰀘
− 1

2

󰀗
a
b

󰀘

=

󰀗
(−2− a)/2
(−5− b)/2

󰀘
.

Thus any matrix of the form

󰀅
T (e1) T (e2) T (e3)

󰀆
=

󰀗
a (−2− a)/2 1
b (−5− b)/2 2

󰀘

will induce a transformation satisfying the given requirements, so there are infinitely many such
linear transformations in the k = 0 case.

51

Lecture 15: Products

Warm-Up 1. Given linear transformations S, T : Rn → Rm, we define their sum to be the function
S + T : Rn → Rm defined by

(S + T)x = Sx+ Tx for x ∈ Rn.

In other words, S + T is the function which adds together the outputs of S and T . We show that
S + T is linear.

First, for any x,y ∈ Rn, we have:

(S + T)(x+ y) = S(x+ y) + T (x+ y)

= (Sx+ Sy) + (Tx+ Ty)

= (Sx+ Tx) + (Sy + Ty)

= (S + T)(x) + (S + T)(y)

where the second line follows from the fact that S and T preserve addition. Hence S+ T preserves
addition.

Second, for any x ∈ Rn and a ∈ R, we have:

(S + T)(ax) = S(ax) + T (ax)

= aSx+ aTx

= a(Sx+ Tx)

= a(S + T)(x),

so S+T preserves scalar multiplication. (The second line uses the fact that S and T preserve scalar
multiplication.) Since S + T preserves addition and scalar multiplication, it is linear as claimed.

Sums of matrices. Using the same notation as above, let A be the matrix of S and B the matrix
of T . Since S + T is linear, it too must be represented by a matrix; the question is: how does the
matrix of S + T relate to the matrix of S and the matrix of T . The unsurprising answer is that
the matrix of S + T is given by the sum A+B, which is the matrix obtained by simply adding an
entry of A to the corresponding entry of B.

Thus the sum is defined so that

(S + T)x = (A+B)x.

Note that this is the same as
(A+B)x = Ax+Bx,

which you should view as a new distributive property. (Previously, we only had such a property
when taking a matrix times the sum of vectors.) The point is that A + B is defined the way it is
precisely so that this property holds. Using induction, the same is true when we take the sum of
more than two matrices.

Warm-Up 2. Suppose that T : Rn → Rm and S : Rm → Rk are linear transformations. The
composition of S and T is the function ST : Rn → Rk defined by first applying T and then S:

(ST)x = S(Tx).

52

We show that ST is linear as well.
First, for any x,y ∈ Rn, using the fact that S and T preserve addition we have:

(ST)(x+ y) = S(T (x+ y))

= S(Tx+ Ty)

= S(Tx) + S(Ty)

= (ST)x+ (ST)y

so ST preserves addition. Second, for any x ∈ Rn and a ∈ R, we have

(ST)(ax) = S(T (ax)) = S(aTx) = aS(Tx) = a(ST)x,

so ST preserves scalar multiplication, where we have used the fact that S and T do. Thus ST is
linear as claimed.

Products of matrices. As when discussing sums, we can ask here what the relation between the
matrix of ST is in relation to the matrix of S and the matrix of T . Denoting the k × m matrix
of S by A and the m × n matrix of T by B, the product of A and B is the matrix AB giving the
standard matrix of ST . This matrix AB is of size k × n and the definition guarantees that

(AB)x = A(Bx)

is true. Indeed, this equality is the definition of the matrix AB. The important point to remember
is that matrix multiplication is defined the way it is precisely so that it corresponds to compositions
of linear transformations.

The question now is: how do we actually compute the product AB directly? You can see how
this is done in the book or my Math 290 notes. To derive the necessary formulas, you can figure
out what (ST)(e1), . . . , (ST)(en) are and then use the fact that these should give the columns of
the matrix of ST . Alternatively, note that if we denote the columns of B by b1, . . . ,bn, then:

(AB)x = A

󰀵

󰀹󰀷
󰀅
b1 . . . bn

󰀆
󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸

󰀶

󰀺󰀸

= A(x1b1 + · · ·+ xnbn)

= x1Ab1 + · · ·+ xnAb1

=
󰀅
Ab1 · · · Abn

󰀆
󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸

=
󰀅
Ab1 · · · Abn

󰀆
x,

which says that AB should be the matrix whose columns are Ab1, . . . , Abn, which is true. Again,
check the book or my Math 290 notes to see examples of explicit computations.

Example 1. This and the final example are meant to emphasize the link between matrix multi-
plication and compositions of linear transformations. Let A be the following 2× 2 matrix:

A =

󰀗
1/2 −

√
3/2√

3/2 1/2

󰀘
.

53

We compute A100, which means the product of A with itself 100 times. Of course, the wrong way
to do this is to sit down and start multiplying A by itself a bunch of times—the better way is
to use the fact that A100 would be the matrix describing the composition of the corresponding
transformation with itself 100 times.

In fact, A describes the rotation transformation R2 → R2 by the angle π/3. The key point is
that rotation by π/3 six times results in a total rotation by 2π, which is the same as doing nothing.
Thus, every time we rotate a multiple of 6 times, we have done nothing. This implies that rotating
96 times is the same as doing nothing, so

rotating 100 times = rotating 4 times = rotating by 4π/3 once.

Thus A100 should be the matrix of a rotation by 4π/3, which is:

A100 =

󰀗
cos 4π

3 − sin 4π
3

sin 4π
3 cos 4π

3

󰀘
=

󰀗
−1/2

√
3/2

−
√
3/2 −1/2

󰀘
.

Actually, for this specific example, it’s not too hard to multiply A by itself a few times and
recognize a pattern, but the approach we used here will be much simpler when dealing with more
complex examples.

Example 2. Let P : R2 → R2 be the linear transformation which orthogonally projects a vector
onto the a line L:

We compute P 4. In fact, we claim that P 2 = P , so P k = P for any k ≥ 1.
For a given x ∈ R2, Px is the orthogonal projection projL x of x onto L, as drawn above.

The key point is that if we apply this projection to a vector which is on L to begin with, nothing
happens:

projL y = y if y is on L.

Thus, since Px will always be on L, we have:

P (Px) = Px for any x ∈ R2,

so P 2x = Px for any x. But this says that the matrices P 2 and P must be the same since they
correspond to the same transformation, meaning that they have the same effect when applied to
any vector. Thus P 2 = P as claimed, so higher powers of P will be equal to P as well, which is
something you can justify precisely using induction.

54

Lecture 16: Inverses

Warm-Up 1. We find all 2× 2 matrices A such that

A

󰀗
1 2
3 4

󰀘
=

󰀗
1 2
3 4

󰀘
A.

(We say that A and [1 2
3 4] commute when this is true. The point is that matrix multiplication is not

commutative in general, so not all matrices A will satisfy this property.) Writing down an arbitrary
expression for A:

A =

󰀗
a b
c d

󰀘
,

the point is that the condition that A and [1 2
3 4] commute give a linear system which the entries of

A must satisfy.
We have

󰀗
a b
c d

󰀘 󰀗
1 2
3 4

󰀘
=

󰀗
a+ 3b 2a+ 4b
c+ 3d 2c+ 4d

󰀘
and

󰀗
1 2
3 4

󰀘 󰀗
a b
c d

󰀘
=

󰀗
a+ 2c b+ 2d
3a+ 4c 3b+ 4d

󰀘
.

Thus for A and [1 2
3 4] to commute we must have

󰀗
a+ 3b 2a+ 4b
c+ 3d 2c+ 4d

󰀘
=

󰀗
a+ 2c b+ 2d
3a+ 4c 3b+ 4d

󰀘
,

so the entries of A must satisfy the following linear system:

3b− 2c = 0

2a+ 3b − 2d = 0

3a + 3c− 3d = 0

.

Solving this gives the general solution as being of the form

󰀵

󰀹󰀹󰀷

a
b
c
d

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷

−c+ d
2
3c
c
d

󰀶

󰀺󰀺󰀸 ,

so we conclude that the matrices which commute with [1 2
3 4] are those which are of the form

A =

󰀗
−c+ d 2

3c
c d

󰀘

where c, d ∈ R.

Warm-Up 2. Consider the perpendicular lines L and L′ drawn below, and let P be the matrix of
the orthogonal projection onto L, P ′ the matrix of the orthogonal projection onto L′, and R the
reflection across the line L:

55

We compute all the possible products of these three: PP ′R,PRP ′, P ′RP,P ′PR,RPP ′, RP ′P . In
fact, we claim that all of these products equal the zero matrix.

The point is that instead of figuring out what each matrix P, P ′, R actually looks like and then
computing each product by hand, we use the fact that matrix products correspond to compositions
of linear transformations. Take any x ∈ R2. Then Px is the orthogonal projection of x onto L,
and so in particular is a vector on L itself. Orthogonally projecting any vector on L onto L′ results
in zero since L and L′ are perpendicular, so P ′Px = 0. Finally, reflecting the zero vector still gives
the zero vector, so we conclude that

RP ′Px = 0 for all x ∈ R2.

Thus RP ′P describes the transformation which sends everything to 0, so RP ′P is the zero matrix.
Similarly, PRx is obtained by first reflecting x across L and then projecting the result onto L.
(Note that the result of this is the same as projecting x itself, so RPx = Px.) Thus PRx is again
a vector on L, so P ′PRx = 0 since projecting something on L onto L′ gives the zero vector. Hence
P ′PR is the zero matrix.

And so on arguing in a similar manner will show that the result of applying any of the desired
products to any vector will always give the zero vector in the end. To do one more: PRP ′x means
we first project x onto L′, then reflect the result across L, and finally project the result onto L. In
this case, P ′x is on L′, RP ′x = −P ′x since reflecting a vector on L′ across the perpendicular L
just flips its direction, so PRP ′x = −PP ′x = 0 since −P ′x is on L′ and projecting it onto L gives
0 since L and L′ are perpendicular. Thus PRP ′ sends any vector to the zero vector, so PRP ′ is
the zero matrix.

Exercise. Finish checking that the remaining products above are also zero.

Invertible matrices. We say that an n× n matrix A is invertible if there exists an n× n matrix
B such that

AB = In and BA = In

where In denotes the n × n identity matrix. (Note that at first glance we need to consider both
equalities AB = I and BA = I separately since matrix multiplication is not commutative, so one
being satisfied doesn’t immediately guarantee the other is as well. We’ll actually see next time that
for square matrices, if one of the above equalities is satisfied the other must be as well, but this is
highly nontrivial fact. Indeed, this is NOT true when we consider linear transformations between
infinite-dimensional spaces, which we’ll talk about soon enough.) If such a B exists, we call it the
inverse of A and denote it by A−1.

56

Exercise. Show that if a matrix has an inverse, it has only one; in other words, show that inverses
are unique if they exist.

Invertible transformations. The point is that invertible matrices correspond to invertible linear
transformations, where we say that a linear transformation T : Rn → Rm is invertible if there exists
a linear transformation S : Rm → Rn such that

(ST)x = x for all x ∈ Rn and (TS)y = y for all y ∈ Rm.

This says that S and T “undo” each other, so that if T sends x to y, S = T−1 sends y back to x.
The equalities AB = I and BA = I in the definition of an invertible matrix are the matrix versions
of the above definition of invertible transformations.

To get a feel for the notion of an inverse, note that the inverse of rotation by θ is rotation by
−θ and the inverse of a reflection is the same reflection itself since performing a reflection twice in
a row gives back the original vector.

Exercise. Show that orthogonal projections are not invertible.

Why only square matrices? In the definition we gave of “invertible matrix”, note that we
assumed A had to be a square matrix, with the same number of rows and columns. This is no
accident: it is only these types of matrices which have the chance of being invertible! Said another
way, only linear transformations Rn → Rn have the hope of being invertible, so that a linear
transformation Rn → Rm with n ∕= m is never invertible.

To be precise, suppose that A is an n×m matrix with n < m. It is possible to find an m× n
matrix B such that AB = In, as you will show on Homework 5. However, for such a B it is never
going to be true that BA = Im, which you will also show on Homework 5. In other words, for
non-square matrices we can never have both AB = I and BA = I at the same time, so we only
consider invertibility for square matrices.

Computing inverses. We’ll talk about the importance of invertible matrices next time, so for
right now we will simply outline the method used to compute them. In the 2 × 2 case there is a
simply formula which you should know by heart:

󰀗
a b
c d

󰀘−1

=
1

ad− bc

󰀗
d −b
−c a

󰀘
,

which exists if and only if ad − bc ∕= 0. We’ll talk more about the mysterious quantity “ad − bc”
next quarter when we discuss determinants.

In the more general n×n setting such a formula is not simple to memorize, which is fine because
the method we now describe gives more insight into what’s special about invertible matrices than
a memorized formula would. To compute A−1, we first setup a large n × 2n augmented matrix󰀅
A | I

󰀆
having A on the left and the n × n identity matrix on the right. Then we row reduce this

matrix until the portion on the left becomes I—the fact is that the resulting matrix on the right is
precisely A−1: 󰀅

A | I
󰀆
→

󰀅
I | A−1

󰀆
.

Note that this assumes that A can be row-reduced to the identity, so that rref(A) = I. We’ll see
next time that this indeed must be true for any invertible matrix.

Why does this process work? Consider the augmented matrix
󰀅
A | I

󰀆
as representing a linear

system
Ax = Iy

57

where the first n columns correspond to the entries of x and the final n columns correspond to the
entries of y. After reducing to something of the form

󰀅
I | B

󰀆
our system becomes

Ix = By.

Thus the matrix B obtained has the property that

Ax = y if and only if x = By,

which says precisely that if A is the matrix of a linear transformation T , B describes the inverse
transformation T−1. Indeed, we have:

(BA)x = B(Ax) = By = x and (AB)y = A(By) = Ax = y,

so BA and AB are both identity matrices. Thus, B = A−1 as claimed.

What’s to come? Check the book or my Math 290 notes for examples of computing explicit
inverses using the method described above. So far we know that if rref(A) = I, then A is invertible
since the this method produces a matrix which satisfies the properties required of A−1. Next time
we will see that the converse is true: if A is invertible, then rref(A) = I. Thus saying that a matrix
is invertible if the same as saying that rref(A) = I. This is the key behind the many different ways
we have of characterizing invertibility, some of which we’ll talk about next time, and others which
are yet to come. In some sense, a good bulk of linear algebra deals with understanding the types
of properties which are equivalent to invertibility.

Lecture 17: More on Invertibility

Even though we phrase the first two examples as Warm-Ups, they each actually contain important
observations about invertible matrices, which we’ll include as part of the main theorem we discuss
afterwards.

Warm-Up 1. We show that the matrix

A =

󰀵

󰀷
1 2 3
4 5 6
7 8 9

󰀶

󰀸

is not invertible. In the course of doing so we will derive a key fact: if rref(A) ∕= I, then A is not
invertible.

Say we didn’t know beforehand that A was not invertible and tried to find its inverse using the
method described last time. Reducing

󰀅
A | I

󰀆
gives:

󰀵

󰀷
1 2 3 | 1 0 0
4 5 6 | 0 1 0
7 8 9 | 0 0 0

󰀶

󰀸 →

󰀵

󰀷
1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 −6 −12 | −7 0 1

󰀶

󰀸 →

󰀵

󰀷
1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 0 0 | 1 −2 1

󰀶

󰀸 .

At this point we can see that it will not be possible to continue reducing the left portion to the
3 × 3 identity matrix, since rref(A) will only have two pivots. Thus, this method for finding the
inverse of A does not work.

However, this is not yet enough alone to say that A is not invertible since it could be that the
inverse of A could be found by some other method apart from the one we described. Why is it

58

exactly that if this method doesn’t succeed we know for sure A is not invertible? The key comes
in recognizing that if A is invertible, then any equation Ax = b always has exactly one solution,
since multiplying both sides on the left by A−1 gives

x = A−1b

has the only x satisfying Ax = b. In particular, Ax = 0 can only have the x = 0 solution if A is
invertible, which we can see by taking b = 0 above.

Based on the row-operations we have done so far, we can see that for the given matrix A,
Ax = 0 will have infinitely many solutions since the reduced form will have a free variable. Since
Ax = 0 has more than only the x = 0 solution, A cannot be invertible as claimed. What we have
shown is that if rref(A) ∕= I, then A is not invertible since Ax = 0 will have more than one solution.

Warm-Up 2. Suppose that A and B are both n × n matrices such that AB = I. We show that
BA = I. In other words, the equation AB = I alone guarantees that A and B are both invertible
and that they are each other’s inverse. This is amazing: matrix multiplication is not commutative,
and yet in this case AB = I does imply BA = I. The fact that A and B are square matrices is
crucial, as is the fact that they are matrices of a finite size. (As I alluded to last time, the analogous
result won’t be true in infinite-dimensional settings.)

Note that we cannot proceed as follows: multiply both sides of AB = I by A−1 on the left to
get A−1AB = A−1I, so B = A−1, and then BA = A−1A = I as claimed. This assumes that we
already know A−1 exists, which is not a given. Indeed, the point of the this Warm-Up is to show
that AB = I does imply A and B are both invertible. The moral is: never introduce inverses until
you know for sure that they exist.

Instead, we use the alternate characterization of “invertible” derived in the first Warm-Up.
Suppose that x ∈ Rn satisfies

Bx = 0.

Multiplying both sides on the left by A gives

A(Bx) = A0, so (AB)x = 0.

But AB = I, so this final equation becomes x = 0. Thus the only solution of Bx = 0 is x = 0.
This means that rref(B) = I since otherwise Bx = 0 would have infinitely many solutions. Thus
the method we described last time for finding the inverse of B will work, so B is invertible.

Now that we know B−1 exists, we can multiply both sides of AB = I on the right by B−1 go
get A = B−1, so that BA = BB−1 = I as claimed.

Amazingly Awesome Theorem. This theorem goes by many names: the Invertible Matrix
Theorem, the Inverse Function Theorem, and others; there is no set standard. I am using the
name I’ve used for over 10 years now, which is meant to emphasize how special—and amazingly
awesome—this theorem really is. (As I said in class, some of the Math 290 instructors have started
using then name “amazingly awesome” as well, so don’t be surprised if years from now you see a
Wikipedia entry about this.)

Here is the statement. Suppose that A is an n × n matrix. Then the following conditions are
equivalent, meaning that they all imply and are implied by one another:

(a) A is invertible

(b) rref(A) = In

59

(c) rank(A) = n

(d) the only solution of Ax = 0 is x = 0

(e) the columns of A are linearly independnet

(f) for any b ∈ Rn, Ax = b has a unique solution

(g) the columns of A span Rn

(h) the linear transformation T (x) = Ax is surjective

(i) the linear transformation T (x) = Ax is injective

In the second-to-last condition, to say that T is surjective means that for any b ∈ Rn there exists
x ∈ Rn such that T (x) = b, and in the final condition to say that T is injective means that if
T (x) = T (y), then x = y.

Thus, all conditions above mean exactly the same thing, and are all different ways of charac-
terizing what it means for a matrix to be invertible. The key one is really the second, from which
all the others follow. As I mentioned, understanding why this theorem is true and the ways (to be
seen) in which it can be extended is one of the key goals of linear algebra.

Proof. We went through some of these in class, but here we’ll give a (mostly) complete proof. I
would expect that proving that any of these imply any of the others is something you should all be
able to understand how to do when it comes to exam-type material.

We have already seen that (a) and (b) are equivalent based on the method we described for
computing inverses and the Warm-Ups. That (b) and (c) are equivalent is also clear: rank(A) = n
if and only if rref(A) has n pivots, which seen A is n×n is true if and only if there are no rows of all
zeroes, which is true if and only if rref(A) = I. That (b) and (d) are equivalent is also something
we’ve essentially worked out already: the only solution of Ax = 0 being x = 0 is true if and only if
rref(A) has no rows of all zeroes so that the augmented matrix

󰀅
rref(A) | 0

󰀆
has no free variables,

which is true if and only if rref(A) = I. Thus each of the first four conditions are equivalent to one
another.

Condition (e) is a rephrasing of (d): the columns of A =
󰀅
v1 · · · vn

󰀆
are linearly independent

if and only if the only scalars x1, . . . , xn satisfying

x1v1 + · · ·+ xnvn = 0

are x1 = · · · = xn = 0, which is true if and only if the only x ∈ Rn satisfying Ax = 0 is x = 0 since
Ax = x1v1 + · · ·+ xnvn where x1, . . . , xn are the entries of x.

(a) =⇒ (f): Suppose A is invertible. For any b ∈ Rn set x = A−1b. Then Ax = A(A−1b) = b,
so Ax = b has a solution, namely x = A−1b. If x ∈ Rn is any vector satisfying Ax = b, then
multiplying on the left by A−1 gives A−1Ax = A−1b, so x = A−1b, showing that Ax = b has only
one solution.

(f) =⇒ (g): Suppose that for any b ∈ Rn, Ax = b has a solution. Since Ax is the same as
x1v1 + · · · + xnvn where v1, . . . ,vn are the columns of A and x1, . . . , xn are the entries of x, this
says that for any b ∈ Rn there are scalars x1, . . . , xn such that x1v1 + · · ·+ xnvn = b. Hence any
binRn is a linear combination of the columns of A, so the columns of A span Rn.

(g) =⇒ (a): Suppose that the columns of A span Rn. If rref(A) wasn’t I, then rref(A)
would have a row of all zeroes, which would mean that there are certain vectors b ∈ Rn for which
Ax = b wouldn’t have a solution. This in turn would mean that b is not a linear combination of

60

the columns of A, so since the columns of A span Rn this cannot happen. Hence rref(A) = I, so A
is invertible since (b) =⇒ (a).

(d) ⇐⇒ (i): Suppose that the only solution of Ax = 0 is x = 0 and let x1,x2 ∈ Rn be two
vectors such that Ax1 = Ax2. Then Ax1 − Ax2 = 0, so A(x1 − x2) = 0. Since x1 − x2 is thus a
solution of Ax = 0, we have x1−x2 = 0, so x1 = x2 and Tx = Ax is injective. Conversely, suppose
that T (x) = Ax is injective. If x ∈ Rn satisfies Ax = 0, then Ax = A0. Since T is injective, this
implies that x = 0, so the only solution of Ax = 0 is x = 0.

Finally, the fact that property (h) is equivalent to invertibility is left to Homework 6, but is
simply a restatement of some other properties listed here.

Computing inverses, redux. We finish with another justification that the method we descried
for computing inverses actually works. Suppose that A satisfies rref(A) = I. There are then
elementary row operations which transform A into I, and as discussed on Problem 9 of Homework
5 there are corresponding elementary matrices such that performing one of these elementary row
operations is the same as multiplying by the corresponding elementary matrix. Thus there are
elementary matrices E1, . . . , Em such that

Em · · ·E1A = I.

Since all matrices are square, the second Warm-Up from today shows that A is invertible and

Em · · ·E1 = A−1.

But thinking of this product on the left as

Em · · ·E1 = Em · · ·E1I,

we see that the product A−1 = Em · · ·E1 is obtained by taking the row operations which transform
A into I and applying them to I, which is precisely what happens to the right side of the augmented
matrix

󰀅
A | I

󰀆
when reducing so that the left side becomes I. Thus the resulting portion on the

right side of
󰀅
I | A−1

󰀆
is indeed the inverse of A as claimed.

Lecture 18: Vector Spaces

Warm-Up. Suppose that A is an invertible n×n matrix. We show that the transpose of A, which
is the matrix AT obtained by turning the rows of A into columns, is also invertible. We will take
it for granted that the following is true: (AB)T = BTAT , so that the transpose of a product is
the product of transposes in the reverse order. We will talk more about transposes when we talk
about the dot product, and will see why (AB)T = BTAT is true then.

If A is invertible, there exists an n × n matrix B (which is just the inverse of A) such that
AB = I. Taking the transpose of both sides gives

(AB)T = IT =⇒ BTAT = I

since IT = I. But since AT and BT are square matrices, the second Warm-Up from last time shows
that AT must be invertible as claimed, with BT being the inverse of AT .

Here is another way to see this. We can show directly that (A−1)T satisfies the defining prop-
erties of the inverse of AT . We compute:

(A−1)TAT = (AA−1)T = IT = I and AT (A−1)T = (A−1A)T = IT = I,

61

so (A−1)T is the inverse of AT , and hence AT is invertible. (This shows that (AT)−1 = (A−1)T .)

Vector spaces. A vector space is meant to be a type of “space” which shares many of the same
properties Rn has. The key points are that a vector space as an “addition” operation and a “scalar
multiplication” operation which satisfies the same basic properties (associativity, commutativity,
distributive, etc.) addition and scalar multiplication of vectors in Rn satisfy.

To be precise, suppose that V is a set equipped with two operations: one we call “addition”
which takes two elements of V and outputs another element of V , and the other we call “scalar
multiplication” which takes a scalar in K (K will denote either or R or C here) and an element
of V and outputs another element of V . We say that V is a vector space over K if the following
properties hold:

(a) (u+ v) + w = u+ (v + w) for all u, v, w ∈ V

(b) u+ v = v + u for all u, v ∈ V

(c) there exists an element 0 ∈ V such that u+ 0 = u = 0 + u for any u ∈ V

(d) for any u ∈ V , there exists an element −u ∈ V such that u+ (−u) = 0 = (−u) + u

(e) a(bu) = (ab)u for any a, b ∈ K and u ∈ V

(f) a(u+ v) = au+ av for any a ∈ K and u, v ∈ V

(g) (a+ b)u = au+ bu for any a, b ∈ K and u ∈ V

(h) 1u = u for any u ∈ V .

Thus, as stated, the “addition” and “scalar multiplication” operations on V should satisfy the same
types of properties as do addition and scalar multiplication on Rn.

Some important things to note. First, we will refer to the elements of V as vectors in V , although
they are not necessarily “vectors” in the sense of Rn as we’ve previously used the term; that is, a
“vector” in a vector space V is simply an element of V . Second, in most concrete examples we’ll be
interested in, “addition” and “scalar multiplication” look very similar to what we ordinarily refer
to as addition and scalar multiplication, but the point is that in general these operations could
be anything whatsoever, as long as together they satisfy the properties listed above—for instance,
there is a problem on the homework which takes the “addition” of x and y to be xy instead of
x+ y. We’ll see another example next time. Third, we refer to the element 0 ∈ V in property (c)
as the zero vector of V , even thought it might not be “zero” as we’re used to—the point is that the
zero vector is completely characterized by the property given in (c), which says that it should be
the additive identity. Finally, (d) says that we use the notation −u to denote the additive inverse
of u, which might not literally be “negative u”.

Other properties. We have seen a few other properties of addition and scalar multiplication in
Rn, such as:

0u = 0, a0 = 0, (−1)v = −v.

The first two were Warm-Ups during the second week of class, and the third was on Homework 1.
The point is that since the proofs we gave of these properties only depended on distributive and
other such properties, the same arguments show that these equalities hold in general vector spaces
as well. This is why it was important to give proofs of these which did not depend on writing an
element in Rn as a column with n entries, but rather proofs using only the properties of addition

62

and scalar multiplication given above. Similarly, in Homework 1 we showed that property (b)—the
commutativity of addition—it follows from the other properties, so this is true in a general vector
space as well.

Main examples. The main examples of vector spaces are the ones we’ve been seeing all along:
Rn and Cn with their usual addition and scalar multiplications. To be precise, Rn is a vector space
over R (also called a real vector space), while Cn is usually thought of as a vector space over C
(also called a complex vector space), even though Cn can also be considered to be a vector space
over R, as we’ll see in some examples next time. The difference just comes in the types of scalars
we allow ourselves to use.

Spaces of matrices. We let Mm,n(R) denote the set of m × n matrices with entires in R. With
the usual definitions of matrix addition and multiplication of a matrix by a scalar, Mm,n(R) is a
vector space over R. The “zero vector” in this space is the m× n zero matrix, and the “negative”
of a matrix A is the matrix obtained by changing the signs of all the entries of A. (So, a “vector”
in Mm,n(R) would mean an m×n matrix in this context.) For square matrices, we will usually use
Mn(R) instead of Mn,n(R) to denote the space of n× n matrices over R.

Similarly, Mm,n(C) denotes the space of m × n matrices with complex entries, and is a vector
space over C with the usual addition and scalar multiplication of matrices.

Spaces of polynomials. We let Pn(R) denote the space of polynomials with real coefficients of
degree at most n:

Pn(R) := {a0 + a1x+ · · ·+ anx
n | a0, . . . , an ∈ R}.

With the usual addition of polynomials and the usual scalar multiplication, this is a vector space
over R. The space P (R) (without a subscript) is the set of all polynomials with real coefficients,
with no restriction on the degree. In any of these, the “zero vector” is the zero polynomial 0.

Similarly, Pn(C) denotes the space of polynomials with complex coefficients of degree at most
n. This is a complex vector space with the usual addition and scalar multiplication.

Spaces of functions. We let F (R) denote the space of all functions from R to R:

F (R) := {f : R → R | f is a function}.

With the usual addition and scalar multiplication of functions, this is a vector space over R.

Lecture 19: More on Vector Spaces

Warm-Up. Define an “addition” operation ⊕ and a “scalar multplication” ⊙ on R via

x⊕ y = 3
󰁳

x3 + y3 + 1 and a⊙ x = 3
󰁳

a(x3 + 1)− 1

for all “vectors” x, y ∈ R and “scalars” a ∈ R. This gives a vector space structure on R over R. We
will verify part of this.

First we determine the “zero vector” of this vector space. This should be an element y ∈ R
such that

x⊕ y = x for all x ∈ R.

Using our definition of ⊕, this gives the requirement that

3
󰁳

x3 + y3 + 1 = x for all x ∈ R,

63

which after solving implies that y = −1. Thus −1 is the “zero vector” of this vector space:

x⊕ (−1) = 3
󰁳

x3 + (−1)3 + 1 =
3
√
x3 = x.

Next we determine the “additive inverse” of each element. The “additive inverse” of x ∈ R
should be the element y ∈ R such that

x⊕ y = zero vector.

(Note that this condition was written in our vector space axioms as x+ y = 0, but the key point is
that “0” here denotes the zero vector of the space and not necessarily the number 0. This is why I
wrote out “zero vector” explicitly above, to avoid confusion.) In our case, we determined the zero
vector to be −1, so we want y to satisfy

x⊕ y = 3
󰁳

x3 + y3 + 1 = −1.

Solving for y gives

y =
3
󰁳

−x3 − 2.

We verify:

x⊕ 3
󰁳

−x3 − 2 =
3

󰁵
x3 +

󰀓
3
󰁳

−x3 − 2
󰀔3

+ 1 =
3
󰁳

x3 − x3 − 2− 1 = −1

as required, so 3
√
−x3 − 2 is the “additive inverse” of x.

Let us also verify one of the distributive properties: for any a ∈ R and x, y ∈ R,

a⊙ (x⊕ y) = (a⊙ x)⊕ (a⊙ y),

which is the analog of a(x+ y) = ax+ ay using our redefined operations. The left side is:

a⊙ (x⊕ y) = a⊙ 3
󰁳

x3 + y3 + 1

= 3

󰁵
a
󰀓

3
󰁳

x3 + y3 + 1
3
+ 1

󰀔
− 1

= 3
󰁳

a(x3 + y3 + 1 + 1)− 1

= 3
󰁳

a(x2 + y3 + 2)− 1.

On the other hand:

(a⊙ x)⊕ (a⊙ y) = 3
󰁳

a(x3 + 1)− 1⊕ 3
󰁳

a(y3 + 1)− 1

=
3

󰁴
3
󰁳

a(x3 + 1)− 1
3
+ 3

󰁳
a(y3 + 1)− 1

3
+ 1

= 3
󰁳

a(x3 + 1)− 1 + a(y3 + 1)− 1 + 1

= 3
󰁳

a(x3 + y3 + 2)− 1,

so a⊙ (x⊕ y) = (a⊙ x)⊕ (a⊙ y) as claimed.
Now, thinking back to Homework 1, we showed there that

(−1)v = −v,

64

and the point is that the proof we gave using only the distributive property, additive inverse propety,
and so on works more generally in any vector space. That is, in any vector space it should be true
that multiplying the scalar −1 by a vector should give the additive inverse of that vector, no matter
what our “addition” and “scalar multiplication” operations actually are. Indeed, note that

(−1)⊙ x = 3
󰁳

−1(x3 + 1)− 1 =
3
󰁳

−x3 − 2,

which we worked out earlier is indeed the additive inverse of x.
Also, back in the second week of class we showed that 0v = 0, meaning that multiplying any

vector by the scalar 0 should give the zero vector of that space. Again, the proof we gave using only
the “vector space” axioms now works more generally, so it should be true in this specific example
as well. Indeed:

0⊙ x = 3
󰁳

0(x3 + 1)− 1 = 3
√
−1 = −1,

which is the zero vector of this space.

Remark. The Warm-Up above illustrates the point of the time we spent verifying such “obvious”
properties as

0v = 0 and (−1)v = −v,

which is: although such properties might be straightforward to see in Rn using components, the
proofs we gave avoiding coordinates show that these properties are true in any vector space whatso-
ever, which is far from obvious since “addition” and “scalar multiplication” might be crazy-looking
operations in general.

The example in the Warm-Up didn’t just come out of nowhere—we’ll see later when we talk
about isomorphisms how I came up with it and how you can similarly come up with tons of other
“crazy” examples.

Linear combinations and independence. The definition of linear combination and linearly
independent we had previously for Rn works just as well in any vector space. To be clear, for a
vector space V over K a linear combination of v1, . . . , vk ∈ V is an expression of the form

c1v1 + · · ·+ ckvk where c1, . . . , ck ∈ K.

The set of all such linear combinations of v1, . . . , vk is called their span, just as it was in the Rn

case. Similarly, we can talk about affine combinations in an arbitrary vector space.
A collection of vectors v1, . . . , vk ∈ V are linearly independent over K if none is a linear combi-

nation of the others over K, or equivalently if the only scalars a1, . . . , ak ∈ K satisfying

a1v1 + · · ·+ akvk = 0

are a1 = · · · = ak = 0. Similarly, we can talk about vectors be affinely independent in an arbitrary
vector space.

Complex vector spaces are real vector spaces. If V is a vector space over C, we can always
consider it to be a vector space over R as well since “scalar multplication” still makes sense if we
restrict to only multiplying by real scalars, which are included among the possible complex scalars.
(Note, however, that a vector space over R cannot generally also be considered to be a vector over
C, since knowing how to multiply by real scalars does not guarantee that multiplying by complex
scalars is also be possible.)

65

Consider Cn. As a vector space over C it is spanned by e1, . . . , en since
󰀵

󰀹󰀷
z1
...
zn

󰀶

󰀺󰀸 = z1e1 + · · ·+ znen.

However, these vectors alone do not span Cn viewed as a vector space over R—in particular, the
above expression is not a valid linear combination over R since the coefficients z1, . . . , zn involved
are not necessarily real. Writing each zk as zk = ak + ibk with ak, bk ∈ R, we have:

󰀵

󰀹󰀷
a1 + ib1

...
an + ibn

󰀶

󰀺󰀸 = (a1 + ib1)e1 + · · ·+ (an + ibn)en

= a1e1 + b1(ie1) + · · ·+ anen + bn(ien),

which is now a valid linear combination over R since the coefficients used a1, b1, . . . , an, bn are all
real. (The point is that we absorb the i into the vector being used.) This says that any element of
Cn can be written as a linear combination of

e1, ie1, . . . , en, ien

over R, so that these 2n vectors (each of the ei’s along with what you get when you multiply each
by i) span Cn as a vector space over R.

Another example. The space P2(C) of polynomials of degree at most 2 with complex coefficients
is a complex vector space, but also a real vector space. As a complex vector space, it is spanned
by 1, x, x2 since any p(x) = P2(C) is of the form

p(x) = a0 + a1x+ a2x
2

for some a0, a1, a2 ∈ C. (Think of the constant term a0 as a0 · 1.) However, as a real vector space
it is spanned by 1, i, x, ix, x2, ix2 since each ak = bk + ick with bk, ck ∈ R gives

p(x) = (b0 + ic0) + (b1 + ic1)x+ (b2 + ic2)x
2 = b0 + c0(i) + b1x+ c1(ix) + b2x

2 + c2(ix
2),

which is a linear combination over R. Note that as a vector space over C we had 3 spanning vectors,
but as a vector space over R we had 6, and in the Cn case, there were n spanning vectors over C
but 2n over R; this “times 2” behavior is not a coincidence, as you’ll show on a future homework.

What about K∞? By K∞ we mean the set of all “infinitely long” vectors, or “vectors” with an
infinite number of components:

K∞ := {(x1, x2, x3, . . .) | each xi is in K}.

(Contrary to previous notation, sometimes we’ll write such vectors as rows when it saves space.)
Another way of saying this is that Kn is the space of infinite sequences of elements of K. We ask:
are there finitely many vectors which span K∞?

Note that, at first glance we might think we can write an expression like:
󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸 = x1e1 + · · ·+ xnen + · · · .

66

However, this doesn’t really make sense: what does it mean to add together infinitely many vectors?
In calculus, we can try to make sense of adding together infinitely many numbers using the idea
of an infinite series, but what would the analogous thing be for vectors? Moreover, not all such
series are “convergent”, meaning they don’t necessarily always give finite values. The upshot is
that we would do NOT call the above expression a linear combination of e1, e2, . . .: the term “linear
combination” always refers to a combination of finitely many vectors. By the span of an infinite
collection of vectors ei we thus mean the set of all linear combinations of finitely many of them.

Going back to the question we asked, it is certainly not true that there are finitely many vectors
among the ei which span all of K∞. Indeed, if we take finitely many of the ei, say:

en1 , . . . , enk
,

then any linear combination of these will have zeroes in the locations after the max{n1, . . . , nk}
location, since each of the eni have zeroes after these locations. Thus such combinations cannot
possibly give everything in K∞, so finitely many of the ei vectors can never span K∞.

However, how do we know that we couldn’t find some finitely many other vectors, none of which
are among the ei, which would span Kn? It turns out that this is not possible, so that Kn is an
example of what we will call an infinite-dimensional vector space. We’ll come back to seeing how
we can justify something like this after we more about linear independence.

Lecture 20: Subspaces

Warm-Up. Let F (R) denote the set of all functions from R to R. Consider the subset U of F (R)
consisting of those functions which are twice-differentiable and whose second derivatives satisfy the
equation f ′′ + f = 0:

U := {f ∈ F (R) | f ′′ exists and f ′′ + f = 0}.

(The equation f ′′ + f = 0 is what is known as a differential equation, so U is the se of solutions
to this differentiable equation.) We claim that U is a vector space over R when equipped with the
ordinary addition and scalar multiplication of functions.

For instance, the distributive property a(f + g) = af + ag for a ∈ R and f, g ∈ U says that the
function a(f + g) should be the same as the function af + ag. Two functions are the same when
they give the same value on a common input, so we verify:

[a(f + g)](x) = a(f + g)(x) = a(f(x) + g(x)) = af(x) + g(x)

and
(af + ag)(x) = (af)(x) + (ag)(x) = af(x) + ag(x),

which are the same. Thus a(f + g) and af + ag give the same output, so a(f + g) = af + ag.
However, rather than check every single tedious vector space property, we will assume we know

already that F (R) is a vector space over R, which it is. (Checking all the properties will go along
the lines of checking the distributive property above.) The point is that since U is a subset of F (R),
any properties which already hold in F (R) will also hold automatically in U . Thus the associativity,
commutativity, and distributive properties hold automatically for U . In fact, to verify that U is a
vector space over R we really only need to check three things:

• 0 ∈ U , where 0 denotes the zero vector of F (R),

• if f, g ∈ U , then f + g ∈ U , and

67

• if f ∈ U and a ∈ R, then af ∈ U .

The first property is needed to guarantee that U does have a zero vector, and the second and third
properties are needed to guarantee that addition and scalar multiplication on U make sense: we
would not have a valid “addition” if adding two things in a space produced something not in that
space, and similarly for scalar multiplication. After these properties are verified, the rest of the
vector space properties hold automatically because they hold in the larger space F (R). (There is
one subtle point about the existence of additive inverses, which we’ll point out afterwards.)

The zero vector of F (R) is the zero function, which is the function 0 which sends everything to
0: 0(x) = 0 for all x ∈ R. This zero function is twice-differentiable (as all constant functions are),
and its second derivative satisfies

0′′ + 0 = 0 + 0 = 0,

so 0 satisfies the requirements needed to be in U . Thus U contains the zero vector of F (R).
If f, g ∈ U , then f, g are each twice-differentiable and satisfy

f ′′ + f = 0 and g′′ + g = 0.

Thus f + g is twice differentiable since (f + g)′′ = f ′′ + g′′, and

(f + g)′′ + (f + g) = f ′′ + g′′ + f + g = (f ′′ + f) + (g′′ + g) = 0 + 0 = 0,

so f + g satisfies the defining equation required of elements of U . Hence f + g ∈ U .
If f ∈ U and a ∈ R, then f is twice-differentiable and f ′′+f = 0. Thus af is twice-differentiable

since (af)′′ = af ′′, and

(af)′′ + (af) = af ′′ + af = a(f ′′ + f) = a0 = 0,

so af ∈ U since it satisfies the required properties of elements of U . We conclude that U is indeed
a vector space over R.

What about negatives? For a vector space V , it is required that if v ∈ V , then its additive
inverse −v is also in V , and note that we didn’t check this explicitly in the Warm-Up example.
If we want to call U in the Warm-Up a vector space, we do in fact have to know that if f ∈ U ,
then −f ∈ U . However, the point is that this follows from the properties we showed above U does
posses: we have shown previously that in any vector space (−1)v = −v for any element v, so the
fact that “if f ∈ U , then −f ∈ U” is encoded in the third property we listed above, namely that
“if f ∈ U , then af ∈ U” for any a ∈ R. Thus, this is not something we have to check separately.

What about zero? After the discussion above you might think: well then, why do we require
that 0 ∈ U as the first condition in the Warm-Up since third condition implies that this is true by
taking the scalar to be 0: if f ∈ U , then 0f ∈ U and 0f is the always the zero vector. The answer
is: this is absolutely correct, and really the only reason we require 0 ∈ U separately is to guarantee
that U is not empty, meaning that it actually has something in it.

Subspaces. Let V be a vector space over K. A subset U of V is a subspace of V if it has the
following properties:

• 0 ∈ U ,

• if u, v ∈ U , then u+ v ∈ U (we say that U is closed under addition), and

68

• if u ∈ U and a ∈ K, then au ∈ U (we say that U is closed under scalar multiplication.

The point is that these properties alone guarantee U is itself a vector space over K, since the other
vector space axioms are automatically satisfied because they are already true in the “larger” space
V .

The moral is: subspaces are just vector spaces which sit inside of other vector spaces.

Back to f ′′+f = 0. So, the point of the Warm-Up was really to show that the space U of functions
satisfying f ′′ + f = 0 is a subspace of F (R). For example, sinx is one such function, and cosx is
another. It turns out that any function f satisfying f ′′+ f = 0 is a linear combination of sinx and
cosx:

there exist a, b ∈ R such that f(x) = a sinx+ b cosx.

Thus, we would say that sinx and cosx span U , so U = span {sinx, cosx}. You will verify this
rigorously on Homework 7. More generally, such claims are also true for other types of differential
equations, but you would need a full course on differential equations to prove this in general. The
point for us is that this provides a connection between the study of differential equations and linear
algebra.

Subspaces of Rn. Wha are some subspaces of R2? One is {0}, so the set which contains only the
origin. Another is all of R2. Also, any line passing through the origin is a subspace of R2, since
adding two points on such a line gives something on the same line, and scaling anything on such
a line gives something on the same line. It turns out that this is it: the only subspaces of R2 are
{0}, lines through the origin, and R2 itself.

Note that a line which doesn’t pass through the origin is not a subspace, since in particular it
does not contain the zero vector. (Such lines are still special though, we’ll see why next time.) The
points on the parabola y = x2 do not form a subspace either, since a parabola is not closed under
addition nor scalar multplication.

More generally, the only subspaces of Rn are: {0}, lines through the origin, planes through the
origin, higher-dimensional analogues through the origin, hyperplanes through the origin, and Rn

itself. We’ll be able to prove this rigorously after we take about bases.

Another example. Let U be the subset of Pn(C) consisting of all even polynomials, where a
polynomial p(x) is even if p(−x) = p(x). We show that this is a subspace of Pn(C).

First, the zero polynomial 0 is even since there are no x’s to replace with −x at all, so p(−x) =
p(x) becomes 0 = 0, which is true. If p(x), q(x) ∈ U , then

p(−x) + q(−x) = p(x) + q(x)

since p(x) and q(x) are each even, so p(x)+ q(x) is even and is hence in U . Thus U is closed under
addition. Finally, if p(x) ∈ U is even and a ∈ C, then

ap(−x) = ap(x),

so ap(x) is even and hence in U , so U is closed under scalar multiplication. Thus U is a subspace
of Pn(C) as claimed.

What are some elements of U which span U? Le us think about the n = 4 case only Writing
an arbitrary polynomial as

p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4,

69

p(x) is even if and only if

p(−x) = a0 − a1x+ a2x
2 − a3x

3 + a4x
4 = a0 + a1x+ a2x

2 + a3x
3 + a4x

4,

which by comparing coefficients requiers that a1 = −a1 and a3 = −a3. Thus a1 and a3 must be
zero, so an even polynomial is of the form

p(x) = a0 + a2x
2 + a4x

4,

or in other words, an even polynomial has only even degree terms. This shows that 1, x2, x4 span
U over C, whereas 1, i, x2, ix2, x4, ix4 would span U over R.

Lecture 21: More on Subspaces

Subspaces are closed under linear combinations. Although the definition of a subspace only
says that

x+ y ∈ U if x, y ∈ U,

it follows by induction that any sum of finitely many elements of U is still in U . This, together the
being closed under scalar multiplication property, implies that U is closed under arbitrary linear
combinations. So, we can also characterize subspaces of a vector space as those subsets which are
closed under linear combinations:

if v1, . . . , vk ∈ U and c1, . . . , ck ∈ K, then c1v1 + · · ·+ ckvk ∈ U.

The point is that rather than having to check this more general property, the subspace definition
gives us simpler conditions which are enough to check.

Warm-Up 1. Let U be the subset of Mn(R) consisting of those matrices A which equal their own
transpose:

U := {A ∈ Mn(R) | AT = A}.

Such a matrix is said to be symmetric, so U is the set of n× n symmetric matrices. We show that
U is a subspace of Mn(R).

We use the fact that the transpose of a sum is the sum of individual transposes:

(A+B)T = AT +BT

and that the transpose of a scalar multiple of a matrix is the scalar multiple of the transpose:

(cA)T = cAT .

Both of these are not hard to see using the definition of the transpose as “switch rows and columns”,
but later we will see the true characterization of transposes and will see the “real” reason why
transposes have these properties, in addition to the property that (AB)T = BTAT .

Turning the rows of the zero matrix into columns still gives the zero matrix, so 0T = 0 and 0 is
symmetric, so 0 ∈ U . If A,B ∈ U , then AT = A and BT = B, so

(A+B)T = AT +BT = A+B,

and hence A+B ∈ U . Finally, if A ∈ U and c ∈ R, then

(cA)T = cAT = cA,

70

so cA equals its own transpose and thus cA ∈ U . Hence U is closed under scalar multiplication, so
we conclude that the space of n× n symmetric matrices is a subspace of Mn(R).

Concretely, in say the n = 3 case, a symmetric matrix must satisfy

󰀵

󰀷
a b c
d e f
g h i

󰀶

󰀸
T

=

󰀵

󰀷
a d g
b e h
c f i

󰀶

󰀸 =

󰀵

󰀷
a b c
d e f
g h i

󰀶

󰀸 ,

which means that a symmetric matrix must look like

󰀵

󰀷
a b c
b e f
c f i

󰀶

󰀸 .

The name “symmetric” comes from the fact that the entries are symmetric across the diagonal.

Warm-Up 2. Suppose that V is a vector space over K and that U and W are subspaces of V .
We show that the intersection U ∩W of U and W is also a subspace of V , where the intersection
of two sets is the set of things they have in common:

U ∩W := {x ∈ V | x ∈ U and x ∈ W}.

First, since U is a subspace of V we know that 0 ∈ U , and since W is a subspace of V we
know that 0 ∈ W . Thus 0 ∈ U ∩W , so U ∩W contains the zero vector of V . Next, suppose that
x, y ∈ U ∩ W . This means that x, y ∈ U and x, y ∈ W . Since U and W are each closed under
addition, we have

x+ y ∈ Uand x+ y ∈ W.

Thus x + y ∈ U ∩ W , so U ∩ W is closed under addition. Finally, suppose that x ∈ U ∩ W and
a ∈ K. Since U and W are each closed under scalar multiplication, we have

ax ∈ U and ax ∈ W

so ax ∈ U ∩W . We conclude that U ∩W is a subspace of V .
For instance, a plane through the origin in R3 is a subspace of R3, and the intersection of two

such planes, which might be say a line through the origin, is also a subspace of R3. More generally, if
we have subspaces defined as the set of solutions to some homogeneous equations, their intersection
is the set of solutions to the system obtained by putting all equations together.

Exercise. The union U ∪W of two subspaces U and W of a vector space V is the set of things
you get when you throw everything in U together with everything in W :

U ∪W := {x ∈ V | x ∈ U or x ∈ W}.

The union of two subspaces is not necessarily itself a subspace. Indeed, consider the x-axis and
y-axis in R2—each of these are subspaces but their union is not. But, it might be possible for
U ∪W to indeed be a subspace; for instance, this happens if U = W .

Show that U ∪W is a subspace of V if and only if U ⊆ W or W ⊆ U . (The notation A ⊆ B
means that A is a subset of B, which means that everything in A is also in B. So, the claim is that
U ∪W is a subspace of V if and only if one of U or W is fully contained in the other.)

71

Spans are subspaces. Let V be a vector space overK and let v1, . . . , vk ∈ V . Then span {v1, . . . , vk}
is a subspace of V . Moreover, span {v1, . . . , vk} is the smallest subspace of V containing v1, . . . , vk,
whereby “smallest” we mean that if U is any subspace of V containing v1, . . . , vk, then

span {v1, . . . , vk} ⊆ U,

so any subspace containing v1, . . . , vk must contain their entire span. (This is what is special about
spans.)

Proof. Since
0V = 0v1 + · · ·+ 0vk,

the zero vector 0V of V is in span {v1, . . . , vk}. (Note that here we use a subscript to denote the
space of which 0 is the zero vector. This is to not confuse the two uses of “0” in this expression: on
the left the zero vector, whereas on the right 0 is denoting the scalar 0 ∈ K. The right side equals
the zero vector since 0v = 0V for any v in any vector space, so the right side is just a sum of a
bunch of zero vectors.)

If x, y ∈ span {v1, . . . , vk}, then each of x and y is a linear combination of v1, . . . , vk:

x = c1v1 + · · ·+ ckvk and y = d1v1 + · · ·+ dkvk

for some c1, . . . , ck, d1, . . . , dk ∈ K. Then

x+ y = (c1 + d1)v1 + · · ·+ (ck + dk)vk,

so x+ y ∈ span {v1, . . . , vk}, and hence spans are closed under addition.
Finally, using the same x as above, if a ∈ K then

ax = a(c1v1 + · · ·+ ckvk) = (ac1)v1 + · · ·+ (ack)vk ∈ span {v1, . . . , vk} ,

so spans are closed under scalar multiplication. We conclude that span {v1, . . . , vk} is a subspace
of V as claimed.

If U is any subspace of V containing v1, . . . , vk, the fact that U is closed under linear combina-
tions says that

c1v1 + · · ·+ ckvk ∈ U

for any c1, . . . , ck ∈ K. But such expressions make up all elements of span {v1, . . . , vk}, so U contains
everything in this span as required in order to say that span {v1, . . . , vk} is the smallest subspace
of V containing v1, . . . , vk.

Kernels are subspaces. The kernel of an m× n matrix is the set kerA of solutions to Ax = 0:

kerA := {x ∈ Rn | Ax = 0}.

Weeks ago when talking about homogeneous equations of this form we in fact showed that the
set of solutions of such an equation is always closed under linear combinations, which in our new
language means that kerA is a subspace of Rn.

For instance, consider the following subset of R3:

U :=

󰀻
󰀿

󰀽

󰀵

󰀷
x
y
z

󰀶

󰀸 ∈ R3

󰀏󰀏󰀏󰀏󰀏󰀏
2x = y + z and 3y = 2z

󰀼
󰁀

󰀾 .

72

It can be checked that this is a subspace of R3 by verifying the definition of subspace directly, or
we can simply note that this space is the same as the kernel of

A =

󰀗
2 −1 −1
0 3 −2

󰀘
.

Indeed, a vector is in U if and only it satisfies the system

2x− y − z = 0

3y − 2z = 0
,

which is true if and only if it satisfies the matrix equation

󰀗
2 −1 −1
0 3 −2

󰀘󰀵

󰀷
x
y
z

󰀶

󰀸 =

󰀗
0
0

󰀘
.

Since U is the kernel of a matrix, it is automatically a subspace.

Affine subspaces. Consider now the following subset

W :=

󰀻
󰀿

󰀽

󰀵

󰀷
x
y
z

󰀶

󰀸 ∈ R3

󰀏󰀏󰀏󰀏󰀏󰀏
2x = y + z + 1 and 3y = 2z + 2

󰀼
󰁀

󰀾

of R3. This is the same as the set of solutions of the inhomogeneous equation

󰀗
2 −1 −1
0 3 −2

󰀘󰀵

󰀷
x
y
z

󰀶

󰀸 =

󰀗
1
2

󰀘
.

When discussing solutions of inhomogeneous equations previously we saw that the set of such solu-
tions is NOT closed under arbitrary linear combinations, it is only closed under affine combinations.

We say that a nonempty subset W of a vector space V over K is an affine subspace of V if it
is closed under affine combinations: if v1, . . . , vk ∈ W and c1, . . . , ck ∈ K satisfy c1 + · · · + ck = 1,
then c1v1+ · · ·+ ckvk ∈ W . Thus, the set W above is an affine subspace of R3. More generally, the
set of solutions of an inhomogeneous equation Ax = b, where A is m× n, is an affine subspace of
Rn. For instance, any line in R2 or R3 which doesn’t pass through the origin is an affine subspace,
as is any plane in R3 which doesn’t pass through the origin.

Sometimes to distinguish between an “affine subspace” and our previous notion of subspace, we
will use the term linear subspace to mean what we previously referred to as simply “subspace”. By
default, if we use the term subspace without any adjective in front, we will take it to always mean
linear subspace—whenever we want to refer to an affine subspace we will always use the adjective
“affine” in front.

Lecture 22: Bases

Warm-Up. Suppose that V is a vector space over K and that U is a (linear) subspace of V . Let
b ∈ V and define b+ U to be the set of all things in V obtained by adding b to elements of U :

b+ U := {b+ u | u ∈ U}.

73

(We say that b+ U is the translation of U by b.) We show that b+ U is an affine subspace of V .
First, since U is a subspace of V , 0 ∈ U so b = b+ 0 ∈ b+ U . Hence b+ U is nonempty. Now,

suppose that v1, . . . , vk ∈ b + U and that c1, . . . , ck ∈ K are scalars such that c1 + · · · + ck = 1.
Since each vi is in b+ U , we can write each vi as

vi = b+ ui for some ui ∈ U

by the form elements of b+ U take. Thus:

c1v1 + · · ·+ ckvk = c1(b+ u1) + · · ·+ ck(b+ uk)

= (c1 + · · ·+ ck)b+ (c1u1 + · · ·+ ckuk)

= b+ (c1u1 + · · ·+ ckuk).

Since U is a linear subspace of V , it is closed under arbitrary linear combinations so

c1u1 + · · ·+ ckuk ∈ U.

Thus the expression above for c1v1 + · · ·+ ckvk is of the form “b plus something in U”, so

c1v1 + · · ·+ ckvk ∈ b+ U.

Hence b+ U is closed under affine combinations, so it is an affine subspace of V .

Exercise. Show that any affine subspace of V is of the form b + U for some b ∈ V and some
(linear) subspace U of V . (This is on Homework 7.)

Affine = linear plus translation. As a consequence of the Warm-Up, any line, plane, hyper-
plane, other higher-dimensional analogou in Rn which do not pass through the origin are all affine
subspaces of Rn since each of these can be described by translating a line, plane, hyperplane, other
higher-dimensional analogue which does pass through the origin. More generally, the set of solu-
tions to an inhomogeneous equation Ax = b, where A is an m× n matrix, is an affine subspace of
Rn since it is obtained by translating the set of solutions of the homogeneous equations Ax = 0 by
a particular solution of Ax = b.

Every usage of the word “affine” we have seen so far in this class fits into the general idea that
affine things are linear things plus a translation. This is true for affine subspaces as we see from
the Warm-Up and related Exercise, it is true for the affine transformations defined on Homework
4 (where the result was that affine transformations are of the form T (x) = Ax + b, and it is true
when considering the relation between affinely independent versus linearly independent vectors as
in Problem 4 of Homework 4; Problem 4 of Homework 7 also relates to this. The point is that
affine things are things we normally would have called “linear” in other contexts, only they aren’t
really linear given the restrictive definition of “linear” we now use; affine things are things which
are “essentially” linear up to translation.

Finite-dimensionality. We say a vector space V over K is finite-dimensional if there are finitely
many vectors in V which span V . For instance, each of Kn, Pn(C),Mm,n(K) are finite-dimensional,
as are any subspaces of these. We say that V is infinite-dimensional over K if it is not finite-
dimensional over K.

For an example of something which is not finite-dimensional, consider the space P (K) of all
polynomials with coefficients in K, where we place no restriction on the degree as opposed to Pn(K).
(Note that the term “polynomial” still requires that each polynomial have finitely many terms.)

74

We claim that P (K) is not finite-dimensional, meaning that no finite collection of polynomials can
span all of P (K).

Indeed, let p1(x), . . . , pk(x) be any finite number of polynomials in P (K). Any linear combina-
tion of these:

c1p1(x) + · · ·+ ckpk(x)

has degree at most equal to the maximum of the degrees of the individual pi(x):

deg(c1p1(x) + · · ·+ ckpk(x)) ≤ max{deg p1(x), . . . , deg pk(x)},

since no higher powers of x can occur simply as a result of adding scalar multiples of the pi(x).
Thus no polynomial with a degree larger than this maximum can be in the span of p1(x), . . . , pk(x),
so these polynomials do not span P (K). This was an arbitrary finite number of polynomials, we
conclude that no finite number of polynomials can span P (K), so P (K) is infinite-dimensional.

Bases. Consider the plane x+ y+ z = 0, which defines a subspace of R3. This is spanned by, say:
󰀵

󰀷
−1
0
1

󰀶

󰀸 ,

󰀵

󰀷
0
−1
1

󰀶

󰀸 ,

󰀵

󰀷
−1
−1
2

󰀶

󰀸 ,

󰀵

󰀷
−1
−2
3

󰀶

󰀸 ,

but of course this is not the smallest possible spanning set since the first two vectors alone also
span the plane. The issue is that the four vectors we gave are linearly dependent, and we have
seen that whenever we have linearly dependent vectors we can throw away any which are linear
combinations of the others without changing the overall span. In this case, we can throw away the
third and fourth vectors—which are each linear combinations of the first two—and still be left with
vectors which span the plane. The first two vectors are linearly independent, and thus it is not
possible to throw one away and still have the remaining vector span the plane.

We say that a collection S of vectors in a (finite or infinite-dimensional) vector space V is a
basis for V if:

• the vectors in S span V , and

• the vectors in S are linearly independent.

A basis for a vector space can be thought of as a “minimal” spanning set for the space, and also
as a “maximal” linearly independent set. (We’ll make these notions precise later on.) Thus, in the
example above, the vectors 󰀵

󰀷
−1
0
1

󰀶

󰀸 and

󰀵

󰀷
0
−1
1

󰀶

󰀸

form a basis for the plane x+ y + z = 0 in R3. There are many other possible bases for this same
plane, and indeed for vector spaces in general.

Example. Consider the space V of 3× 3 symmetric matrices over R:

V := {A ∈ M3(R) | AT = A}.

We find a basis for this space. First, note that any 3× 3 symmetric matrix has the form
󰀵

󰀷
a b c
b d e
c e f

󰀶

󰀸 where a, b, c, d, e, f ∈ R.

75

Think of the scalars a, b, c, d, e, f as “free variables” in the sense that there is no restriction placed
on them. Factoring out these “free variables” gives

󰀵

󰀷
a b c
b d e
c e f

󰀶

󰀸 = a

󰀵

󰀷
1 0 0
0 0 0
0 0 0

󰀶

󰀸+ b

󰀵

󰀷
0 1 0
1 0 0
0 0 0

󰀶

󰀸

+ c

󰀵

󰀷
0 0 1
0 0 0
1 0 0

󰀶

󰀸+ d

󰀵

󰀷
0 0 0
0 1 0
0 0 0

󰀶

󰀸

+ e

󰀵

󰀷
0 0 0
0 0 1
0 1 0

󰀶

󰀸+ f

󰀵

󰀷
0 0 0
0 0 0
0 0 1

󰀶

󰀸 ,

which shows that any 3 × 3 symmetric matrix can be written as a linear combination of the six
matrices on the right, so these six matrices span V . Call these matrices A1, . . . , A6 in the order in
which they appear.

To check that these six matrices are linearly independent, we suppose c1, . . . , c6 ∈ R are scalars
such that

c1A1 + · · ·+ c6A6 =

󰀵

󰀷
0 0 0
0 0 0
0 0 0

󰀶

󰀸

and show that all ci have to be zero. First, A1 is the only matrix which could give a nonzero entry
in the upper-left corner of the sum on the left, so since this entry must be 0 in the zero matrix we
must have c1 = 0. Since A2 is the only matrix which could possibly give a nonzero entry in either
the first row, second column position or the second row, first columns position and each of these
must be zero in the zero matrix, we must have c2 = 0. Continuing in a similar way we conclude
that all ci are zero, where the point is that each of these matrices has a 1 in a location where all
the others have a 0. Thus A1, . . . , A6 are linearly independent, so they form a basis of V .

Another example. Let V be the space of polynomials p(x) in P3(K) satisfying p(2) = 0:

V := {p(x) ∈ P23(K) | p(2) = 0}.

We claim that (x − 2), (x − 2)2, (x − 2)3 form a basis of V . First, to show that these are linearly
independent, suppose that c1, c2, c3 ∈ K satisfy

c1(x− 2) + c2(x− 2)2 + c3(x− 2)3 = 0.

Note that the third term is the only which could give degree 3 term, which is c3x
3. Since the right

side 0 has no degree 3 term, we must have that the left side shouldn’t either, so c3 = 0. We’re left
with

c1(x− 2) + c2(x− 2)2 = 0.

The second term is the only which could give a degree 2 term, which c2x
2. Since the right side has

no such term, we must have c2 = 0. Thus we get

c1(x− 2) = 0.

Since the right side has no x term at all, we must have c1 = 0, so all coefficients in our original
equation are 0 and hence (x− 2), (x− 2)2, (x− 3)3 are linearly independent.

76

Now we show that these three polynomials span V , simply by brute force. (We’ll see “better”
ways of showing something like this soon which can avoid a lot of messy computations.) Suppose
that

p(x) = a0 + a1x+ a2x
2 + a3x

3 ∈ V,

so p(x) satisfies p(2) = 0. We must show that p(x) can be written as a linear combination of
(x− 2), (x− 2)2, (x− 3)3, or in other words that there exist scalars c1, c2, c3 ∈ K such that

a0 + a1x+ a2x
2 + a3x

3 = c1(x− 2) + c2(x− 2)2 + c3(x− 2)3.

Multiplying out the right side gives

(−2c1 + 4c2 − 8c3) + (c1 − 4c2 + 12c3)x+ (c2 − 6c3)x
2 + c3x

3,

so comparing coefficients with those of p(x) shows that c1, c2, c3 must satisfy

−2c1 + 4c2 − 8c3 = a0, c1 − 4c2 + 12c3 = a1, c2 − 6c3 = a2, c3 = a3.

Also, since p(2) = 0, we must have

a0 + 2a1 + 4a2 + 8a3 = 0, so a0 = −2a1 − 4a2 − 8a3.

Thus c1, c2, c3 must satisfy the linear system:

−2c1 + 4c2 = −2a1 − 4a2 − 8a3

c1 − 4c2 + 12c3 = a1

c2 − 6c3 = a2

c3 = a3.

Solving for this c1, c2, c3 shows that there is a solution, meaning that there are scalars c1, c2, c3 such
that

p(x) = c1(x− 2) + c2(x− 2)2 + c3(x− 2)3.

Thus (x− 2), (x− 2)2, (x− 2)3 span V , so these three polynomials form a basis of V .
For those of you who had Calculus BC or know something about Taylor series, note that the

type of expression we want in this case:

p(x) = c1(x− 2) + c2(x− 2)2 + c3(x− 2)3

takes the form of a Taylor series centered at 2. From this point of view, the general theory of Taylor
series will say write away that such coefficients c1, c2, c3 exist, and specifically it turns out that

ck =
p(k)(2)

k!
(x− 2)k

where p(k) denotes the k-th derivative of p. This is NOT the way I had in mind above when I said
we’ll be able to show that (x− 2), (x− 2)2, (x− 2)3 span V in a simpler way soon, so no worries if
you’re unfamiliar with Taylor series.

77

Lecture 23: Dimension

Warm-Up. Let V be a finite dimensional vector space over K. We show that a collection
v1, . . . , vn ∈ V forms a basis for V if and only if for every v ∈ V there exist unique scalars
c1, . . . , cn ∈ K such that

v = c1v1 + · · ·+ cnvn.

The key word here is “unique”, with the point being that bases provide a unique way of expressing
each element of V , as opposed to spanning sets in general where they may be more than one way
of writing an element of V as such a linear combination.

Suppose first that v1, . . . , vn is a basis of V and let v ∈ V . Since v1, . . . , vn span V , there exist
scalars c1, . . . , cn ∈ K such that

v = c1v1 + · · ·+ cnvn.

Suppose now that d1, . . . , dn ∈ K are possibly different scalars such that

v = d1v1 + · · ·+ dnvn.

We must show that each di is the same as the corresponding ci. Since

c1v1 + · · ·+ cnvn = d1v1 + · · ·+ dnvn,

we have
(c1 − d1)v1 + · · ·+ (cn − dn)vn = 0.

Since v1, . . . , vn are linearly independent, each of the coefficients above must be zero, so

ci − di = 0, and hence ci = di for each i.

Thus the scalars needed to express v as a linear combination of v1, . . . , vn are unique as claimed.
Conversely suppose that v1, . . . , vn have the property that each v ∈ V can be written as a linear

combination of v1, . . . , vn in a unique way. Saying that each v ∈ V can be written as a linear
combination of v1, . . . , vn (forgetting about uniqueness for now) means that v1, . . . , vn span V . To
how that v1, . . . , vn are linearly independent, suppose that c1, . . . , cn ∈ K are scalars such that

c1v1 + · · ·+ cnvn = 0.

We must show that each ci is zero. Since we can also express the zero vector as

0 = 0v1 + · · ·+ 0vn,

we have
c1v1 + · · ·+ cnvn = 0v1 + · · ·+ 0vn.

The uniqueness of the scalars needed to express 0 as a linear combination of v1, . . . , vn now guar-
antees that ci = 0 for all i, so v1, . . . , vn are linearly independent and hence form a bass for V as
claimed.

Linearly dependent means non-uniqueness. To be clear, here is an example where a linearly
dependent spanning set gives rise to non-unique linear combinations. Consider the subspace of R3

consisting of all vectors of the form 󰀵

󰀷
a
2a
b

󰀶

󰀸 .

78

This subspace is spanned by 󰀵

󰀷
1
2
0

󰀶

󰀸 ,

󰀵

󰀷
0
0
1

󰀶

󰀸 ,

󰀵

󰀷
1
2
1

󰀶

󰀸 .

When expressing a vector in this subspace as a linear combination of these spanning vectors, there
are infinitely many ways of doing so, here are a few:

󰀵

󰀷
a
2a
b

󰀶

󰀸 = a

󰀵

󰀷
1
2
0

󰀶

󰀸+ b

󰀵

󰀷
0
0
1

󰀶

󰀸+ 0

󰀵

󰀷
1
2
1

󰀶

󰀸

= (a− b)

󰀵

󰀷
1
2
0

󰀶

󰀸+ (b− a)

󰀵

󰀷
0
0
1

󰀶

󰀸+ b

󰀵

󰀷
1
2
1

󰀶

󰀸

=

󰀕
a− b

2

󰀖󰀵

󰀷
1
2
0

󰀶

󰀸+
b

2

󰀵

󰀷
0
0
1

󰀶

󰀸+
b

2

󰀵

󰀷
1
2
1

󰀶

󰀸 .

This point is that these three vectors do not form a basis for this space since they are linearly
dependent. Throwing away the third vector does leave us with a basis, and the uniqueness property
given in the Warm-Up will hold.

Size of a basis. We are working up towards proving that any bases of a finite dimensional vector
space must consist of the same number of vectors. Bases themselves aren’t unique: a given vector
space has infinitely many possible bases. For instance,

󰀝󰀗
1
0

󰀘
,

󰀗
0
1

󰀘󰀞 󰀝󰀗
1
1

󰀘
,

󰀗
3
1

󰀘󰀞 󰀝󰀗
1

−20

󰀘
,

󰀗
π
e

󰀘󰀞

are three different bases for R2. Note that each of these contain two vectors, which will be true of
any basis of R2. This will allow us to finally give a precise meaning to the word “dimension”.

Linearly independent size vs spanning size. First we show that the size of any linearly
independent set of vectors in V must be less than or equal to the size of any spanning set of V . To
be clear, the claim is that if v1, . . . , vk ∈ V are linearly independent and w1, . . . , wm ∈ V span V ,
then k ≤ m. This specific proof is due to John Alongi.

Suppose to the contrary that k > m. Since w1, . . . , wm span V , we can write each vi as a linear
combination of w1, . . . , wm:

vi = a1iw1 + · · ·+ amiwm for some a1i, . . . , ami ∈ K.

Consider the m× k matrix A whose i-th column consists of the m scalars a1i, . . . , ami:

A =

󰀵

󰀹󰀷
a11 · · · a1k
...

. . .
...

am1 · · · amk

󰀶

󰀺󰀸 .

Since k > m, this matrix has more columns than rows and hence there exist x1, . . . , xk ∈ K, at
least one of which is nonzero, such that

󰀵

󰀹󰀷
a11 · · · a1k
...

. . .
...

am1 · · · amk

󰀶

󰀺󰀸

󰀵

󰀹󰀷
x1
...
xk

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
0
...
0

󰀶

󰀺󰀸 .

79

(In other words, the system Ax = 0 has a nonzero solution since rref(A) has at least one column
without a pivot.)

For the scalars x1, . . . , xk above, we have (using the previous linear combination expressions we
had for the vi):

x1v1 + · · ·+ xkvk = x1(a11w1 + · · ·+ am1wm) + · · ·+ xk(a1kw1 + · · ·+ amkwm)

= (x1a11 + · · ·+ xka1k)w1 + · · ·+ (x1am1 + · · ·+ xkamk)wm.

But the coefficients in this final expression are precisely the entries of the product
󰀵

󰀹󰀷
a11 · · · a1k
...

. . .
...

am1 · · · amk

󰀶

󰀺󰀸

󰀵

󰀹󰀷
x1
...
xk

󰀶

󰀺󰀸 ,

which are all zero by the choice of x1, . . . , xk. Thus

x1v1 + · · ·+ xkvk = 0w1 + · · ·+ 0wm = 0,

showing that v1, . . . , vk are linearly dependent since at least one of the xi is nonzero. This contra-
dicts our assumption that v1, . . . , vk are linearly independent, so we must have k ≤ m as claimed.

Remark. Note that what we have actually shown in the proof above is that whenever we have more
vectors than the number of vectors in a spanning set, those vectors must be linearly dependent. In
particular, any list containing more vectors than that in a basis for a vector space must be linearly
dependent.

All bases have the same size. We can now show that any two bases of a finite dimensional
vector space must have the same number of vectors. Suppose that V is finite dimensional and that
v1, . . . , vn and w1, . . . , wm are both bases of V . Noting first that v1, . . . , vn are linearly independent
and that w1, . . . , wm span V , the result above shows that n ≤ m. Flipping things around noting
that w1, . . . , wm are linearly independent and that v1, . . . , vn span V , we also get m ≥ n. Since
n ≤ m and m ≤ n, we conclude that m = n as claimed.

Dimension. We define the dimension dimV of a vector space to be the number of vectors in a
basis for V . The fact that all bases have the same number of vectors shows that this definition
makes sense. Sometimes to emphasize the types of scalars we are considering, we use dimK V to
denote the dimension of V considered as a vector space over K. Note that K matters: a problem
on Homework 7 shows that if dimC V = n, then dimR V = 2n.

So far this definition of “dimension” only makes sense for finite dimensional spaces. We’ll say
some things about bases for infinite dimensional spaces next time. Note also that the dimension
of V is essentially the number of “independent parameters” needed to specify an element of V ; for
instance, the space of 3 × 3 symmetric matrices is 6-dimensional since such a matrix must of the
form 󰀵

󰀷
a b c
b d e
c e f

󰀶

󰀸 ,

and so it requires 6 independent values a, b, c, d, e, f to specify a 3× 3 symmetric matrix.

The zero vector space. We define the dimension of {0} to be zero. After all, what could a basis
for {0} actually be? A first guess might be to say that 0 itself forms a basis, but it seems strange

80

that we should consider a single point to be “1-dimensional”. Indeed, any set of vectors containing
0 is actually linearly dependent by convention, even when 0 is the only vector in that set.

So, we end up with the strange-looking fact that a basis for {0} is given by the empty set! This
basis has zero elements, so dim{0} = 0. Really, we say that the empty set gives a basis of {0} just so
that saying dim{0} = 0 makes sense, but you should take this to be simply a quirk of the definition
of dimension. Apart from considering a single point to be a 0-dimensional object geometrically,
we’ll see other reasons why we should consider dim{0} to be 0, namely to make certain formulas
work out nicely.

Lecture 24: More on Bases and Dimension

Old problems are now easy. Before the Warm-Up, let’s point out that many problems we
considered before, say on homeworks, are now relatively straightforward. For instance, consider a
hyperplane

a1x1 + · · ·+ anxn = 0

passing through the origin in Rn. Problem 10b on Homework 3 actually shows that this hyperplane
is (n − 1)-dimensional, and Problem 10c, which was a difficult problem back then, is not just a
consequence of the fact that fewer vectors than the dimension of a vector space cannot possibly
span that space since any spanning set must have at least as many vectors as that in a basis. I
encourage you to go back through old problems and examples and see how many of them can be
rephrased using newer material.

Warm-Up. We show that a vector space V over K is infinite dimensional if and only if there exists
an infinite collection v1, v2, v3, . . . of linearly independent vectors in V . Recall that our definition of
“infinite dimensional” is “not finite dimensional”, so “can’t be spanned by finitely many vectors”.

Suppose that V is infinite dimensional. Then V ∕= {0}, so there exists a nonzero vector v1 ∈ V .
Since V is infinite dimensional, v1 alone does not span V , so there exists v2 ∈ V such that v2 is
not in span {v1}. Then v1, v2 are linearly independent. Again, these two cannot span V since V
is not finite dimensional, so there exists v3 ∈ V not in span {v1, v2}. Then v1, v2, v3 are linearly
independent, and continuing in this manner we end up with infinitely many linearly independent
vectors. (To be a little more precise, suppose by induction that we have constructed so far k linearly
independent vectors v1, . . . , vk. These do not span V , so picking vk+1 not in their span gives k + 1
linearly independent vectors. Thus we can find n linearly independent vectors for any n, which all
together gives infinitely many such vectors.)

Conversely suppose that there exists a list of linearly independent vectors v1, v2, v3, . . . in V . If
V was finite dimensional, there would exist finitely many vectors w1, . . . , wk in V which span V ,
but then v1, . . . , vk+1 would be a list of linearly independent vectors containing more elements than
the spanning set w1, . . . , wk. This is not possible, so V must be infinite dimensional.

K∞ is infinite dimensional. We can now show that K∞ is infinite dimensional. This is an
immediate consequence of the Warm-Up once we note that

e1, e2, e3, e4, . . .

is a list of infinitely many linearly independent vectors of K∞, where ei denotes the vector with a
1 in the i-th location and zeroes elsewhere.

Now, as discussed a while ago, the vectors e1, e2, e3, . . . do NOT span K∞ since it is not true
that everything in K∞ can be written as a linear combination of finitely many of these vectors,

81

which is a requirement when we talk about the span of an infinite set of vectors. Thus, e1, e2, . . .
do not give a basis for K∞. Contrast this with the space of polynomials P (K), for which

1, x, x2, x3, . . .

does give an honest basis. (The point is that any polynomial only has finitely many terms, whereas
an element of K∞ might contain infinitely many nonzero entries.)

So, what would a basis for K∞ actually be? Does it even have a basis? It turns out one
can show, using some advanced results in set theory, that every infinite dimensional vector space
indeed does have a basis! (We’ll show in a bit without much trouble that finite dimensional spaces
always have bases.) However, the amazing thing is that even though we know K∞ has a basis, it
is NOT possible to actually write one down explicitly, which is kind of mind-blowing. We won’t
discuss this further in this course, but this is related to the notion of cardinality and the idea one
infinite set can in a sense be “larger” than another infinite set. To be precise, the claim is that
K∞ has uncountable dimension, whereas something like P (K) has countable dimension. Look up
“countable” and “uncountable” to learn more, or we can talk about it in office hours sometime.
The proof that infinite dimensional spaces have bases uses what’s called the axiom of choice, which
we can also talk about in office hours if you’re interested. Good stuff.

Spanning sets can be reduced to bases. Suppose that v1, . . . , vk is a basis for a vector space
V . If this vectors are linearly independent, they give a basis for V . If they are linearly dependent,
one is a linear combination of the others, so throwing it away still results in vectors which span
V . If this smaller list is linearly independent, it gives a basis for V , and if not we can throw out
another vector and still be left with spanning vectors. Continuing in this way we eventually end up
with a basis for V , so the result is that any set of vectors which spans V can be reduced to a basis.

Finite dimensional spaces have bases. In particular, if V is finite dimensional, there are finitely
many vectors v1, . . . , vk which span V . By the result above, this list can be reduced to a basis, so
V has a basis. This basis will contain finitely many vectors, which justifies our use of the term
“finite dimensional” to describe spaces which can be spanned by finitely many vectors.

Linearly independent sets can be extended to bases. Suppose that v1, . . . , vk is a list of
linearly independent vectors in a finite dimensional space V . If these vectors span V , they form a
basis. If not, there is a vector vk+1 ∈ V which is not in their span, and then v1, . . . , vk, vk+1 is still
linearly independent. If these span V they form a basis, and if not we can find another vector to
append to end up with v1, . . . , vk, vk+1, vk+2 being linearly independent. Continuing in this way we
eventually end up with linearly independent vectors v1, . . . , vn which span V , so they give a basis
for V . (This process must stop since V is not infinite dimensional, so it is not possible to find a list
of infinitely many linearly independent vectors in V .) This shows that any linearly independent
list of vectors in V can be “extended” to a basis of V .

Subspaces of finite dimensional spaces. Finally, we justify some seemingly “obvious” facts,
but which aren’t actually obvious at all. Note the way that we use what we’ve built up to actually
prove these facts.

Suppose that V is finite dimensional and that U is a subspace of V . First we claim that U
itself must be finite dimensional. If U instead were infinite dimensional, by the Warm-Up we would
be able to find infinitely any linearly independent vectors in U , but seeing as these would also be
linearly independent vectors in V , this contradicts the fact that V is finite dimensional. Thus U
must be finite dimensional.

82

Second, we claim that dimU ≤ dimV . Let u1, . . . , uk be a basis for U . Since these vectors are
linearly independent in V as well, they can be extended to a basis

u1, . . . , uk, v1, . . . , vℓ

for V . But then dimU = k ≤ k+ ℓ = dimV , as claimed. In the fact, the only subspace of V which
has the same dimension as V is V itself: if U is a subspace of a finite dimensional vector space V
and dimU = dimV , then U = V .

Lecture 25: Linear Transformations Redux

Warm-Up. Suppose that V is a finite dimensional vector space, with n = dimV . Let v1, . . . , vn ∈
V . We justify the fact that if v1, . . . , vn are linearly independent, then they automatically span
V and so form a basis, and if instead v1, . . . , vn span V , then they are automatically linearly
independent and so form a basis. We’ve seen previously that these facts are true of n vectors in
Rn, but now we are saying that they hold in any finite dimensional space.

Suppose v1, . . . , vn are linearly independent. Then this list can be extended to a basis of V .
But since any basis of V must contain n = dimV vectors, the resulting basis obtained by extending
this list must be v1, . . . , vn itself, so these vectors already form a basis of V and hence span V . Said
another way: if v1, . . . , vn didn’t span V , extending them to a basis would give a basis with more
than n vectors, which is not possible.

Suppose v1, . . . , vn span V . Then this list can be reduced to a basis of V . But since any basis
of V must contain n vectors, the basis obtained after reducing must be v1, . . . , vn itself, so these
vectors already form a basis and hence are linearly independent. Said another way: if v1, . . . , vn
weren’t linearly independent, reducing this list to a basis would yield a basis with fewer than n
vectors, which is not possible.

Affine dimension. To finish up our material on dimension, we give a definition of the affine
dimension of an affine subspace of V . If W is an affine subspace of V , we know from Homework
7 that we can write W as the translate of a linear subspace U : W = b + U for some b ∈ W . We
define the affine dimension of W to be the (linear) dimension of U . With this definition, we can
now give a completely general definition of the terms “line”, “plane”, and “hyperplane”. A line in
a vector space V is a 1-dimensional affine/linear subspace of V , a plane in V is a 2-dimensional
affine/linear subspace of V , and a hyperplane in V is an (n− 1)-dimensional affine/subspace of V
where n = dimV . These definitions agree with the usual concept of “line” and “plane” in R3.

Note that the affine dimension of W is NOT the number of vectors in an affine basis for W as
defined on Homework 7—it is one less than the number of vectors in an affine basis. Check the
solutions to Homework 7 to see a further discussion of this, and note that Problem 1b on Homework
1 was really about showing that a line which doesn’t pass through the origin in R2 has an affine
basis consisting of any two distinct points on that line, or in other words this problem shows that
such a line is a 1-dimensional affine subspace of R2.

Linear transformations. A function T : V → W from a vector space V over K to a vector space
W over K is a linear transformation if it preserves addition and scalar multiplication in the sense
that:

• T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V , and

• T (cv) = cT (v) for all v ∈ V and c ∈ K.

83

This is the same definition we had for linear transformations Rn → Rm, only now we’re phrasing
it in the more general setting of abstract vector spaces.

There is one thing to note now which wasn’t an issue when we dealt only with Rn previously:
the addition and scalar multiplication used on either side of these conditions are the ones taking
place in the appropriate vector space. Meaning, the “+” on the left side of the first condition
indicates the addition operation on V whereas the “+” on the right side indicates the addition on
W , and cv on the left of the second condition uses the scalar multiplication on V whereas cT (v)
on the right uses the scalar multiplication of W . The point is that linear transformations relate
the two additions to one another and the two scalar multiplication to one another, so in a sense a
linear transformation “preserves” the vector space structure.

Example 1. Let R+ denote the set of positive real numbers equipped with the “addition” and
“scalar multiplication” operations defined by:

x⊕ y = xy and r ⊙ x = xr.

We claim that the function T : R → R+ defined by T (x) = ex is a linear transformation, where
the domain R has the usual addition and scalar multiplication. The “preservation of addition”
property in this case looks like:

T (x+ y) = T (x)⊕ T (y),

since as stated before the + on the right side in the definition of “linear transformation” denotes
the addition of the second space. In our case, we have:

T (x+ y) = ex+y = exey = T (x)T (y) = T (x)⊕ T (y)

as required. For the scalar multiplication property, we have:

T (cx) = ecx = (ex)c = T (x)c = c⊙ T (x)

as required as well. Hence T is a linear transformation.
In fact, this property is what motivates the definition of the vector space structure on R+ in

the first place. The function T : R → R+ is invertible (with inverse g(x) = log x), so the question
is: what would “addition” and “scalar multiplication” on R+ have to be in order to make f linear?
The addition operation ⊕ on R+ would have to satisfy the property that

T (x+ y) = ex+y is the same as T (x)⊕ T (y) = ex ⊕ ey,

which says that ⊕ must be ordinary multiplication, and the scalar multiplication operation ⊙ must
satisfy the requirement that

T (cx) = ecx is the same as c⊙ T (x) = c⊙ ex,

which says that c⊙ ex must be (ex)c.
Looking back to the Warm-Up from Lecture 19, the addition and scalar multiplication opera-

tions
x⊕ y = 3

󰁳
x3 + y3 + 1 and a⊙ x = 3

󰁳
a(x3 + 1)− 1

defined there came from wanting the invertible function T : R → R defined by T (x) = x3 +1 to be
linear: i.e. these are the only operations on (the second copy of) R for which x 󰀁→ x3+1 is a linear
transformation.

84

Example 2. Let C∞(R) denote the set of infinitely-differentiable functions from R to R, which is
a vector space over R. (It is a subspace of the space of all functions from R to R.) We show that
the function L : C∞(R) → C∞(R) defined by

L(f) = f ′′ − 2f ′ + f

is a linear transformation. The essential point is that the operation of taking a derivative is a linear
one. We have

L(f + g) = (f + g)′′ − 2(f + g)′ + (f + g)

= f ′′ + g′′ − 2f ′ − 2g′ + f + g

= (f ′′ − 2f ′ + f) + (g′′ − 2g′ + g)

= L(f) + L(g),

so L preserves addition. Also, if c ∈ R is a scalar:

L(cf) = (cf)′′ − 2(cf)′ + (cf) = cf ′′ − 2cf ′ + cf = c(f ′′ − 2f ′ + f) = cL(f),

so L preserves scalar multiplication and is hence linear.
Such linear transformations are called linear differential operators, and are the main object of

study in advanced differential equations courses since so-called linear differential equations can
be rephrased as looking at solutions of an equation of the form L(f) = g where L is some linear
differential operator. The upshot is that by recasting the study of differential equations in terms
of linear algebra, a new range of tools are available to study them. We won’t go into this in any
more detail, but mention it just to point out one of the main uses of linear algebra in other areas.

Example 3. Define the function T : M2(R) → R2 by

T

󰀗
a b
c d

󰀘
=

󰀗
a+ d
ad− bc

󰀘
.

This is not linear, since for instance it does not preserve scalar multiplication:

T

󰀕
k

󰀗
a b
c d

󰀘󰀖
=

󰀗
ka+ kd

k2ad− k2bc

󰀘
is not equal to kT

󰀗
a b
c d

󰀘
=

󰀗
ka+ kd
kad− kbc

󰀘

unless k = 1 or 0. Also, T does not preserve addition, as you should check on your own.

Properties of linear transformations. We list some properties that all linear transformations
have, which should remind you of properties we previously saw for matrices. If T : V → W is a
linear transformation, then:

• T (0V) = 0W , where 0V and 0W denote the zero vectors of V and W respectively,

• T preserves arbitrary linear combinations,

• T is completely determined by what it does to a basis of V ,

• The set {v ∈ V | T (v) = 0} of solutions to T (v) = 0 is a subspace of V , and

• For fixed w ∈ W , the set {v ∈ V | T (v) = w} of solutions to T (v) = w is an affine subspace
of V if there is at least one solution.

85

The first property is the analog of A0 = 0 for matrix transformations, the second property follows by
induction, the fourth property is the analog of the claim that the set of solutions of a homogeneous
equation Ax = 0 is a subspace of Rn when A is m×n, and the fifth is the analog of the claim that
the set of solutions of an inhomogeneous equation Ax = b is an affine subspace of Rn when A is
m× n and there is at least one solution. Proving these will be left as an exercise.

The third property is something we saw for matrices only we didn’t necessarily make it as explicit
as we are here. The claim is that if v1, . . . , vn is a basis of V , then knowing T (v1), . . . , T (vn) is
enough to determine what T does to any input. For matrices, we previously referred to this as
the fact that matrices are determined by a “finite amount of linearly independent data”. Indeed,
if v ∈ V is any vector, we can write it as a linear combination of the basis vectors in a unique way:

v = c1v1 + · · ·+ cnvn,

and since T is linear we get
T (v) = c1T (v1) + · · ·+ cnT (vn),

so knowing T (v1), . . . , T (vn) allows us to compute T (v) for any v ∈ V as claimed.

Exercise. Prove the remaining properties listed above.

Definitions. Let T : V → W be a linear transformation. We say that T is

• injective if T (x) = T (y) implies x = y,

• surjective if for any w ∈ W there exists v ∈ V such that T (v) = w, and

• invertible if it is both injective and surjective, or equivalently if there is an inverse linear
transformation T−1 : W → V such that

T−1(T (v)) = v for all v ∈ V and T (T−1(w)) = w for all w ∈ W.

Again, all these definitions mimic something we already saw for matrices. Invertible linear trans-
formations are also called isomorphisms, and we’ll talk about them more in the coming days.

Lecture 26: Images and Kernels

Definitions. We start with two definitions. For a linear transformation T : V → W , the kernel of
T is the subspace kerT of V consisting of all vectors which T sends to 0:

kerT := {v ∈ V | T (v) = 0}.

The image of T is the subspace imT of W consisting of all the elements of W which are attained
as actual outputs of T :

imT := {w ∈ W | there exists v ∈ V such that T (v) = w}.

The fact that kerT is a subspace of V was mentioned last time as the property that the solutions
of T (v) = 0 form a subspace of V , and the fact that imT is a subspace of W is something we’ll
now prove.

86

Proof that images are subspaces. First, since T (0V) = 0W is true for any linear transformation,
0W ∈ imT since there is something in V , namely 0V , which is sent to 0W . Second, if w1, w∈ imT ,
then there exist v1, v2 ∈ V such that

T (v1) = w1 and T (v2) = w2,

so
T (v1 + v2) = T (v1) + T (v2) = w1 + w2,

showing that w1 + w2 ∈ imT and hence imT is closed under addition. Finally, if w ∈ imT and
a ∈ K is a scalar, there exists v ∈ V such that T (v) = W , so that

T (av) = aT (v) = aw,

meaning that aw ∈ imT and hence imT is closed under scalar multiplication. Thus imT is a
subspace of W as claimed.

Warm-Up 1. Suppose that T : V → W is a linear transformation. We show that for x, y ∈ V ,
T (x) = T (y) if and only if x ∈ y + kerT , where y + kerT is the affine subspace of V obtained by
translating the linear subspace kerT by y. For the backwards direction, if x ∈ y + kerT , we can
write x as

x = y + v for some v ∈ kerT,

so
T (x) = T (y + v) = T (y) + T (v) = T (y)

since v ∈ kerT . Thus x ∈ y + kerT implies T (x) = T (y).
For the forward direction, suppose T (x) = T (y). Then T (x − y) = T (x) − T (y) = 0, so

x− y ∈ kerT . Thus
x = y + (x− y)

expresses x as y plus something in the kernel of T , so x ∈ y + kerT as claimed.
Note that for T to be injective, we need T (x) = T (y) to imply x = y. Since we have x ∈ y+kerT ,

in order for this to force x and y to be the same, we need kerT to only consist of the zero vector:
i.e. if x = y + v for some v ∈ kerT and x = y, we must have v = 0. Thus we get as a consequence
of the Warm-Up that

T is injective if and only if kerT = {0}.
The point is that the kernel of T measures the extent to which T fails to be injective: if kerT is
0-dimensional, T is injective, while if kerT is positive dimensional then T is not injective. Moreover,
if say kerT is k-dimensional, then for any y ∈ V there is an entire k-dimensional affine subspace
y + kerT of V consisting of elements which map to the same thing as y does, so in a sense as
dim(kerT) gets larger and larger, T becomes “more and more” non-injective.

Warm-Up 2. Consider the function T : Mn(K) → Mn(K) defined by

T (A) = 2(A−AT),

so that T sends a matrix A to the matrix 2(A−AT). We show that T is linear, and then compute
its kernel, the dimension of its kernel, its image, and the dimension of its image.

The fact that T is linear comes from the fact that the operation of taking transposes is a linear
one in the sense that (A+B)T = AT +BT and (cA)T = cAT . We have:

T (A+B) = 2[(A+B)− (A+B)T]

87

= 2(A+B −AT −BT)

= 2(A−AT) + 2(B −BT)

= T (A) + T (B),

so T preserves addition. If c ∈ K is a scalar,

T (cA) = 2[(cA)− (cA)T] = 2(cA− cAT) = c2(A−AT) = cT (A),

so T preserves scalar multiplication and is thus linear as claimed.
Now, kerT consists of those matrices which satisfy T (A) = 0. Thus we are looking at matrices

A for which
2(A−AT) = 0, or 2A = 2AT , or A = AT .

Thus A ∈ kerT if and only if A = AT , so we find that the kernel of T consists of the n×n symmetric
matrices:

kerT = {A ∈ Mn(K) | AT = A}.

Such a matrix is of the form 󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a11 a12 · · · a1n

a12
. . .

...
...

. . .
...

... a(n−1)n

a1n · · · a(n−1)n ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

where the entries below the diagonal correspond to ones above the diagonal. This has

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

independent parameters (obtained by adding up the number of independent parameters in each
column), which are the values of aij for i ≤ j, so we conclude that

dim(kerT) =
n(n+ 1)

2
.

The image of T consists of all matrices B ∈ Mn(K) which can be expressed as

B = 2(A−AT) for some A ∈ Mn(K).

Note that all such matrices must in fact satisfy BT = −B:

BT = 2(A−AT)T = 2(AT −A) = −2(A−AT) = −B

where we use the fact that (AT)T = A. This says that anything in the image of T must be skew-
symmetric (the name given to matrices satisfying BT = −B), so the image is contained in the
space of all skew-symmetric n×n matrices. In fact, we claim that imT is in fact equal to the entire
space of n× n skew-symmetric matrices:

imT = {B ∈ Mn(K) | BT = −B}.

One way to see this is to note that if B is skew-symmetric, then A = 1
4B satisfies

T (A) = 2(A−AT) = 2

󰀕
1

4
B − 1

4
BT

󰀖
=

1

2
(B −BT) =

1

2
(B − (−B)) = B,

88

so B ∈ imT , showing that any skew-symmetric matrix is in the image of T .
Another way to show that imT is the space of skew-symmetric matrices proceeds as follows. As

noted above, imT is a subspace of the space of skew-symmetric matrices, so if we can show that this
space has the same dimension as imT , then we know they must be the same. Any skew-symmetric
n× n matrix is of the form 󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 a12 · · · a1n

−a12
. . .

...
...

. . .
...

... a(n−1)n

−a1n · · · −a(n−1)n 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

where all diagonal entries are 0 and the entries below the diagonal are the negatives of the corre-
sponding entry above the diagonal. In this case, there are

1 + 2 + · · ·+ (n− 1) =
(n− 1)n

2

independent parameters, namely the values of aij for i < j, so the space of skew-symmetric n× n

matrices has dimension (n−1)n
2 . We will see later (using the so-called “Rank-Nullity Theorem”)

how we can easily show that imT also has dimension (n−1)n
2 , which will finish off this alternate

justification that the image of T is the space of skew-symmetric matrices. For now, as a clue of
what’s to come, note that

dimMn(K2)− dim(kerT) = n2 − n(n+ 1)

2
=

n(n− 1)

2
,

which is the claimed dimension of imT—this is no accident, hint hint.

Image and kernel of a matrix. If A is an m× n matrix, then A defines a linear transformation
T : Rn → Rm via T (x) = Ax, and we refer to the image and kernel of this transformation as the
image and kernel of A itself. So,

kerA = {x ∈ Rn | Ax = 0},

which is the space of solutions of Ax = 0. If we go through the process of solving this equation
using row operations, we end up with a general solution of the form

x = c1x1 + · · ·+ ckxk

where c1, . . . , ck are the free variables in the row reduced-echelon form of the augmented matrix
(A | 0), and x1, . . . ,xk are the vectors obtained after “factoring” out the free variables. This vectors
thus span kerA, and since each has a 1 in a location where the others have a zero, they are linearly
independent hence form a basis for kerA. We conclude that

dim(kerA) = the number of free variables in Ax = 0.

The image of A consists of all b ∈ Rm for which there exists x ∈ Rn such that Ax = b, or in
other words all b ∈ Rm for which Ax = b has a solution. But we have seen that saying Ax = b
has a solution is the same as saying that b is a linear combination of the columns of A, so we find
that

imA = span {columns of A}

89

is an alternate description of imA. A problem on Homework 8 asks you to show that a basis for
imA is obtained by taking the columns of A which correspond to the pivot columns of rref(A), so
the number of such columns is given by rankA. Thus we conclude that

dim(imA) = rankA,

which finally gives the “real” meaning behind the notion of rank.
Note that in this case:

dim(imA) + dim(kerA) = n

if A is m × n, which is a special case of the so-called “rank-nullity theorem”, which was also
mentioned in the second Warm-Up above. We’ll come back to this in a few days.

Example. Say that P is the 2× 2 matrix of the orthogonal projection of R2 onto a line L in R2.
The image of P is the line L itself, since it is only points on this line which are obtained as outputs
of P , and the kernel of P is the line perpendicular to L, since points on this perpendicular line
are the ones which project to 0. Thus rankP = 1, which you could also see but working out the
standard matrix of P and row-reducing; the point is that seeing that rankP = 1 is much simpler
when determining imP geometrically than when row reducing P .

Note the fact that P is not invertible is reflected in the fact that rankP < 2. Indeed,
non-invertible transformations in general are ones which “collapse” dimensions, sending higher-
dimensional spaces onto lower-dimensional ones.

Amazingly Awesome continued. An n × n matrix A is invertible if and only if kerA = {0},
or equivalently if and only if dim(kerA) = 0. Also, A is invertible if and only if imA = Rn, or
equivalently dim(imA) = n. The first condition is just rephrasing the statement that Ax = 0 has
only the x = 0 solution, while the second rephrasing the statement that the columns of A span Rn.

Lecture 27: Isomorphisms

Warm-Up 1. The actual Warm-Up we did in class was not correct as stated without the assump-
tion we give below on the size of dimW . I encourage you to see if you can figure out why on your
own, and we can talk about it in office hours. For now, I’ll note that there is something wrong
with our claim that the kernel of the transformation we defined consisted of U alone. The solution
below is correct.

Suppose that V is a finite-dimensional vector space over K and that U is a subspace of V . Let
W be a vector space of dimension at least dimV − dimU . We construct a linear transformation
T : V → W whose kernel is precisely U . This shows that any subspace of V arises as the kernel of
some linear transformation.

Let u1, . . . , uk be a basis for U , and extend it to a basis v1, . . . , vℓ of V . Pick any ℓ linearly
independent vectors w1, . . . , wℓ in W (such vectors exist by our assumption that dimW ≥ dimV −
dimU) and define T by saying

T (ui) = 0 for each i, T (vj) = wj for each j,

and then extending T linearly to all of V . To say that we extend T linearly means that we define
T on the rest of V in the only possible way we can if we want to ensure that T is linear: to be
precise, since u1, . . . , uk, v1, . . . , vℓ is a basis of V , any x ∈ V can be written in unique way as

x = c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dℓvℓ,

90

and then in order for T to be linear we must define T (x) as

T (x) = c1T (u1) + · · ·+ ckT (uk) + d1T (v1) + · · ·+ dℓT (vℓ).

This is a reflection of the fact that linear transformations are completely determined by what they
do to a basis, so if we specify what T does to a basis there is only one possible way to define T on
other inputs if T is to be linear.

In this case, by how we defined T (ui) and T (vj) we get

T (x) = d1w1 + · · ·+ dℓwℓ.

Thus T (x) = 0 if and only if d1w1 + · · · + dℓwℓ = 0, which is true if and only if d1 = · · · = dℓ = 0
since w1, . . . , wℓ are linearly independent. Thus x ∈ kerT if and only if x can be written as a
linear combination of u1, . . . , uk alone, which means that x ∈ U since these vectors span U . Hence
kerT = U as desired.

Warm-Up 2. Suppose that U is a subspace of Rn. As a counterpart to the previous Warm-Up
we now show that there is an n × n matrix whose image is U . The key point is to recall that the
image of a matrix is the same as the span of its columns.

Let u1, . . . ,uk be a basis of U . Then the n× k matrix having these vectors as its columns has
image equal to U , since this image is spanned by u1, . . . ,uk, which span U . However, this matrix
is not n × n unless U was actually Rn itself. To fix this, we can simply throw in extra columns
which don’t alter the span of the columns; for instance, let A be the matrix having u1, . . . ,uk as
the first k columns and then enough columns of 0 to get an n× n matrix overall:

A =
󰀅
u1 · · · uk 0 · · · 0

󰀆
.

The image of A is the span of u1, . . . ,uk,0, . . . ,0, which is the same as the span of u1, . . . ,uk,
which is U . Any matrix of this type where the remaining n− k columns are linearly combinations
of u1, . . . ,uk will work.

Isomorphisms. Recall that a linear transformation T : V → W is an isomorphism if it is injective
and surjective, or equivalently if it is invertible. When such an isomorphism exists, we say that V
and W are isomorphic vector spaces. The point is that isomorphisms “preserve” various properties
of vector spaces, so that isomorphic vector spaces are in some sense the “same”, or at least behave
in the same way, as we’ll see.

Example. Define a function T : P2(R) → R3 by

a0 + a1x+ a2x
2 󰀁→

󰀵

󰀷
a0
a1
a2

󰀶

󰀸 ,

where this notation is just another way of saying

T (a0 + a1x+ a2x
2) =

󰀵

󰀷
a0
a1
a2

󰀶

󰀸 .

So, T simply associates to a polynomial in P2(R) the vector in R3 which encodes its coefficients.
You can check that T is linear, which amounts to noticing that adding polynomials corresponds to

91

adding coefficients and multiplying a polynomial by a scalar amounts to multiplying the coefficients
by that scalar. Since the only polynomial which is sent to 0 is the zero polynomial (the one all of
whose coefficients are zero), kerT = {0} so T is injective. Moreover, given any vector in R3, we
can find a polynomial which is sent to that vector by taking the polynomial whose coefficients are
precisely the entries of the given vector, T is surjective. Thus T is an isomorphism, so P2(R) and
R3 are isomorphic.

The idea is that even though P2(R) and R3 appear to be different since they consist of different
types of objects, they should really be thought of as being the “same” since the way in which
addition and scalar multiplication (the operations which determine the vector space structure)
behave in one mimics the way in which they behave in the other. In other words, polynomials in
P2(R) are fully characterized by their coefficient vectors, so there’s not much point in distinguishing
between them.

Here is a concrete problem we can now more easily answer using this approach. A while back
we considered the subspace U of P2(R) consisting of those polynomials p(x) which satisfy p(2) = 0:

U = {p(x) ∈ P2(R) | p(2) = 0}.

We showed that (x − 2), (x − 2)2 formed a basis for U , which in particular means that U is 2-
dimensional. The justification that (x− 2), (x− 2)2 are linearly independent was straightforward,
but it took more work to show that these spanned all of U . We didn’t do this part in class, and
in the lecture notes it boiled down to doing a bunch of algebra. Here we now give a much simpler
justification of the fact that (x− 2), (x− 2)2 form a basis of U .

We start with the fact that (x− 2), (x− 2)2 are linearly independent, which again is not hard
to show. Now, if we could show that dimU = 2 in a way which didn’t depend on finding an
explicit basis at first, we would be able to say immediately that (x − 2), (x − 2)2 formed a basis
of U and hence spanned U . The point is that instead of working with U directly, we work with
the subspace of R3 to which it corresponds under the isomorphism T . In particular, so that a
polynomial p(x) = a0 + a1x+ a2x

2 is in U requires that

p(2) = a0 + 2a1 + 4a2 = 0.

Thus, after applying T , the vectors in R3 which arise as the outputs corresponding to the inputs
in U are those of the form 󰀵

󰀷
a0
a1
a2

󰀶

󰀸 such that a0 + 2a1 + 4a2 = 0.

The space of such vectors forms a basis of R3, which we call the image of U under T :

U 󰀁→

󰀻
󰀿

󰀽

󰀵

󰀷
a0
a1
a2

󰀶

󰀸 ∈ R2

󰀏󰀏󰀏󰀏󰀏󰀏
a0 + 2a1 + 4a2 = 0

󰀼
󰁀

󰀾 .

(The image of a subspace is the set of all outputs obtained by applying the transformation to
inputs which come from that subspace.) The point is that isomorphisms preserve dimensions, so
that dimU is equal to the dimension of its image. The image consists of all solutions of the linear
system

a0 + 2a1 + 4a2 = 0,

and the space of solutions to this 2-dimensional since there are two free variables in the reduced
row-echelon form. Thus dimU = 2, so (x−2), (x−2)2 form a basis for U since they are two linearly
independent vectors in this 2-dimensional space.

92

The overarching idea behind isomorphisms is that questions which might not be so straightfor-
ward to answer in one vector space might become simpler to address if we instead rephrase it in
terms of an isomorphic vector space.

Things preserved under isomorphisms. An isomorphism T : V → W preserves the following
notions:

subspaces, linear independence, bases, dimension, and other “linear algebraic” concepts

in the sense that linearly independent vectors in V are sent to linearly independent vectors in
W , subspaces of V are sent to subspaces of W , bases of subspaces of V are sent to bases of the
corresponding subspaces ofW , the dimension of a subspace of V equals the dimension of its “image”
in W , and so on.

Another example. Let V be the space of 3× 3 symmetric matrices over R:

V = {A ∈ M3(R) | AT = A}.

This space is isomorphic to R6, which reflects the fact that it takes 6 independent parameters to
specify an element of V . Concretely, a specific isomorphism V → R6 is given by

󰀵

󰀷
a b c
b d e
c e f

󰀶

󰀸 󰀁→

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a
b
c
d
e
f

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
.

Again, the point is that instead of carrying around the extra “baggage” which comes with working
with matrices, we can interpret such a symmetric matrix corresponding to an element of R6, and
in this way questions about 3× 3 symmetric matrices can be rephrased in terms of questions about
R6, where they might be simpler to address.

Lecture 28: Rank-Nullity Theorem

Warm-Up. Suppose that S : V → W is an isomorphism and that T : V → V is any linear
transformation. The composition B := STS−1 then gives a linear transformation W → W , and we
will encode all of these maps in the diagram:

V W

V W

S

T B = STS−1

S

We claim that under S, kerT maps onto kerB and imT maps onto imB, which is what it means to
say that isomorphisms “preserve” kernels and images: anything in the kernel of T on the V side of
this diagram corresponds to something in the kernel of B on the W side, and anything in the image
on the V side corresponds to something in the image on the W side. (Think of the transformation

93

B = STS−1 as following the top arrow from right to left, then the left arrow, and then the bottom
arrow. I’m just using B to denote this composition to keep from having to always write STS−1.)

To say that kerT maps onto kerB means two things: applying S to something in kerT gives
something in kerB, and second anything in kerB comes from applying S to something in kerT .
First, suppose that v ∈ kerT . Then

B(Sv) = (STS−1)(Sv) = S(Tv) = S(0) = 0,

so Sv ∈ kerB. Thus anything in kerT is sent to something in kerB. Now suppose that w ∈ kerB.
Since S, being an isomorphism, is surjective, there exists v ∈ V such that Sv = w. Since Bw = 0,
we have:

0 = Bw = (STS−1)(Sv) = S(Tv).

Since S is injective, the only thing which maps to 0 is 0, so the above equality implies that Tv = 0.
Thus the thing which maps to w ∈ kerB is itself in kerT , so anything in kerB arises by applying
T to something in kerT . We conclude that S maps kerT onto kerB as claimed.

To say that imT maps onto imB means two things: applying S to something in imT gives
something in imB, and second anything in imB comes from applying S to something in imT . Let
v′ ∈ imT , meaning that there exists v ∈ V such that T (v) = v′. Then

B(Sv) = (STS−1)(Sv) = S(Tv) = Sv′,

showing that Sv′ is in the image of B since Sv ∈ W is something which B sends to Sv′. Thus
applying S to something in imT gives something imB. Now suppose that w′ ∈ imB, so there
exists w ∈ W such that Bw = w′. Then

w′ = Bw = S(T (S−1w)).

Here, S−1w ∈ V and thus T (S−1w) ∈ imT , so T (S−1w) is an element of imT which S sends to
w′, so anything in imB arises by applying S to something in imT . Thus S maps imT onto imB
as claimed.

Remark. It might take a good while to make sense of the above proofs, especially if you’re not
used to arguments which move from one vector space to another and back. That’s okay: we’ll see
more of this type of idea when we talk about coordinates.

Example. Let us actually use the result of the Warm-Up to justify something we did in a previous
Warm-Up. In the second Warm-Up of Lecture 26 we considered the linear transformation T :
Mn(K) → Mn(K) defined by

T (A) = 2(A−AT).

We showed there that the kernel of T was the space of all n× n symmetric matrices:

kerT = {A ∈ Mn(K) | AT = A},

and we also justified there that the dimension of this kernel is n(n+1)
2 . We also showed using a more

brute-force computation that the image of T was the space of n× n skew-symmetric matrices, and
now we see how we can justify this using a dimension count instead.

As we said back in Lecture 26, anything in the image of T definitely is skew-symmetric, so imT
is a subspace of the space of skew-symmetric matrices:

imT ⊆ {C ∈ Mn(K) | CT = −C}.

94

Thus to show that these two sets are actually equal, all we need to do is show they have the same
dimension. The space of skew-symmetric n×n matrices has dimension n(n−1)

2 as shown in Lecture

26, so we only to justify that dim(imT) is n(n−1)
2 as well.

The point is that we can figure out dim(imT) by passing from Mn(K) to an isomorphic vector
space instead, and then applying the result of the Warm-Up. In particular, consider the isomor-
phism

S : Mn(K) → Kn2

which associates to an n×n matrix the vector in Kn2
which encodes all of its entires—to be precise,

the isomorphism we have in mind is:

󰀵

󰀹󰀷
a11 · · · a1n
...

. . .
...

an1 · · · ann

󰀶

󰀺󰀸 󰀁→

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a11
...

a1n
...

an1
...

ann

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Consider the diagram:

Mn(K) Kn2

Mn(K) Kn2

S

T B = STS−1

S

The Warm-Up implies that dim(imT) should be the same as dim(imB), since imT is sent to imB
under the isomorphism S and isomorphisms preserve dimensions.

So, we have recast the question of finding the dimension of the image of T into one which
involves finding the dimension of the image of a transformation Kn2 → Kn2

instead. But I claim
that this is now more straightforward: B is given by some n2 × n2 matrix, and for matrices we
know that

dim(imB) + dim(kerB) = the # of columns of B

since dim(imB) is given by the number of pivots columns in rref(B) and dim(kerB) the number
of free variables. In our case, we know that

dim(kerB) =
n(n+ 1)

2

since this was the value of dim(kerT), so

dim(imB) = n2 − n(n− 1)

2
=

n(n+ 1)

2
.

Thus we conclude that dim(imT) = n(n+1)
2 , so imT is the entire space of skew-symmetric n × n

matrices as claimed.

95

Rank-Nullity Theorem. The example above used the idea that we can move from working with
Mn(K) to working with Kn2

instead, and that for linear transformations B : Kn2 → Kn2
we have

dim(imB) + dim(kerB) = dimKn2
.

In fact, such an equation is true for maps between any finite-dimensional spaces, which is the content
of the Rank-Nullity Theorem. The benefit is that we don’t always have to use an isomorphism to
recast questions about a vector space V into ones about Kn if we want to make use of this relation
between the image and kernel of a linear transformations, but can continue to work with V alone.

Here is the statement. Suppose that V is finite-dimensional and that T : V → W is a linear
transformation. Then

dim(imT) + dim(kerT) = dimV.

(As a consequence of the proof, imT is finite dimensional even thoughW might not be, so dim(imT)
makes sense.) The rank of T is defined to be dim(imT) (which agrees with the number of pivots in
the reduced echelon form in the case of matrices) and the nullity of T is defined to be dim(kerT),
so the equality above can be written as

rankT + nullity T = dimV,

which is where the name “rank-nullity theorem” comes from.
We’ll prove this result next time, and finish today with some sample applications.

Previous example. We can avoid using isomorphisms in the previous example and directly show
that the rank of the linear map A 󰀁→ 2(A−AT) from Mn(K) to Mn(K) as as we previously claimed.
Since Mn(K) has dimension n2 over K, we have by the rank-nullity theorem:

dim(imT) = dimMn(K)− dim(kerT) = n2 − n(n+ 1)

2
=

n(n− 1)

2

where we make use of the fact that kerT is the space of symmetric n × n matrices, as previously
shown.

Old example revisited. We previously looked at the following example. Let U denote the
subspace of P2(R) consisting of polynomials p(x) which satisfy p(2) = 0. We showed that (x −
2), (x−2)2 was a basis of this space, where the key point was showing that dimU = 2 either directly
or by using an isomorphism. Now we can do this a bit more simply using the rank-nullity theorem.

Let T : P2(R) → R be the linear map defined by

p(x) 󰀁→ p(2).

(You should convince yourself that this is linear.) The kernel of T is precisely the subspace U we
are interested in. The image of T is a subspace of R, so it is either {0} or R itself, and since there
is something nonzero in the image (the result of applying T to any nonzero constant polynomial
gives a nonzero value in the image), we must have that imT = R. Thus rankT = 1 so

dim(kerT) = dimP2(R)− rankT = 3− 1 = 2

and hence U is 2-dimensional.

Final example. Consider the linear map T : Pn(R) → Pn−1(R) defined by

p(x) 󰀁→ p′(x).

96

The kernel consists of all polynomials which have derivative zero, so is the space of constant
polynomials and hence has dimension 1. Thus by rank-nullity we get

dim(imT) = dimPn(R)− dim(kerT) = (n+ 1)− 1 = n,

which implies that imT = Pn−1(R) since dimPn−1(R) = n. Hence T is surjective, which is an
elaborate way of showing that any polynomial has an antiderivative: for any polynomial q(x),
there exists a polynomial p(x) such that p′(x) = q(x). Of course, we don’t need linear algebra to
show this since we can write down such an antiderivative explicitly, but the rank-nullity theorem
gives a new way of interpreting this fact.

Lecture 29: More on Rank-Nullity

Warm-Up. Let U be the subspace of P3(R) defined by

U := {p(x) ∈ P3(R) | p(1) = 0 and p(2) = 0}.

Thus, U consists of those polynomials which have both 1 and 2 as roots. We find a basis of U .
Thinking about the relation between roots of a polynomial and ways of factoring that polyno-

mial, any polynomial in U must have both (x−1) and (x−2) as factors. Some possible polynomials
in U are:

(x− 1)(x− 2), (x− 1)2(x− 2), (x− 1)(x− 2)2.

The idea is that if we can figure out what the dimension of U must be some other way, we can
reduce our problem of finding a basis to that of finding enough linearly independent polynomials in
U . The rank-nullity theorem will allow us to determine the dimension of U without a lot of work.

Define the transformation T : P3(R) → R2 by

p(x) 󰀁→
󰀗
p(1)
p(2)

󰀘
.

This is linear, as you can check, and has U as its kernel: the kernel consists of those polynomials
p9x) which are sent to the zero vector in R2, which requires that both components p(1) and p(2)
be zero. Thus, by recasting U as the kernel of some linear transformation, we can make use of the
rank-nullity theorem to find its dimension.

The image of T is a subspace of R2, and we claim that this image is in fact all of R2. Indeed,
given any [cd] ∈ R2, we can find scalars a0, a1, a2, a3 ∈ R such that

a0 + a1 + a2 + a3 = c and a0 + 2a1 + 4a2 + 8a3 = d

since the reduced echelon form of the augmented matrix

󰀗
1 1 1 1 | c
1 2 4 8 | d

󰀘

has a pivot in both rows. This says that given any [cd] we can find a polynomial

p(x) = a0 + a1x+ a2x
2 + a3x

3

which T sends to [cd], so anything in R2 is in the image of T and hence imT = R2 as claimed.
Thus

dim(kerT) = dimP3(R)− dim(imT) = 4− 2 = 2,

97

so U is 2-dimensional. Since (x−1)(x−2) and (x−1)2(x−2) are two linearly independent (because
they have different degrees) elements of U , they form a basis of U . (The polynomials (x−1)(x−2)
and (x− 1)(x− 2)2 would also give a basis, as would (x− 1)2(x− 2) and (x− 1)(x− 2)2.)

Proof of Rank-Nullity. One way to prove the rank-nullity theorem might be to pick isomor-
phisms between V and some Rn and between W and some Rm, and then use these to rephrase
dim(kerT) and dim(imT) in terms of some matrix instead. Of course, this assumes that W is
finite-dimensional, which is actually not needed in the rank-nullity theorem, but even so it has the
extra baggage of having to work with isomorphisms. Here we give a direct proofs which avoids
isomorphisms.

To recall, the statement is that if V is finite-dimensional and T : V → W is a linear transfor-
mation, then dimV = dim(imT) + dim(kerT).

Proof. Let u1, . . . , uk ∈ kerT be a basis for kerT , and extend this to a basis

u1, . . . , uk, v1, . . . , vℓ

of V , which can be done since u1, . . . , uk are linearly independent and V is finite-dimensional we
claim that T (v1), . . . , T (vℓ) then form a basis of imT .

First, let w = T (v) ∈ imT . Since the ui’s and vj ’s give a basis of V , they span V so we can
write

v = c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dℓvℓ

for some c1, . . . , ck, d1, . . . , dℓ ∈ K. Then

w = Tv = c1T (u1) + · · ·+ ckT (uk) + d1T (v1) + · · ·+ dℓT (vℓ) = d1T (v1) + · · ·+ dℓT (vℓ)

since each of T (u1), . . . , T (uk) are zero given that the ui’s came from a basis of kerT . This shows
that anything in imT can be written as a linear combination of T (v1), . . . , T (vℓ), so these vectors
span imT .

Now, to show that these vectors are linearly independent, suppose that

a1T (v1) + · · ·+ aℓT (vℓ) = 0

for some a1, . . . , aℓ ∈ K. We must show that each aj is zero. By linearity of T we have

T (a1v1 + · · ·+ aℓvℓ) = 0,

so a1v1 + · · ·+ aℓvℓ ∈ kerT . Hence we can express this in terms of the basis we have for the kernel
of T , so

a1v1 + · · ·+ aℓvℓ = b1u1 + · · ·+ bkuk

for some b1, . . . , bk ∈ K. Rearranging gives

a1v1 + · · ·+ aℓvℓ − b1u1 − · · ·− bkuk = 0.

Since the ui’s and vj ’s form a basis of V , they are linearly independent so we conclude that all
coefficients in this final expression must be zero, and in particular a1 = · · · = aℓ = 0. Thus
T (v1), . . . , T (vℓ) are linearly independent as claimed, so we conclude that they form a basis of imT .

Using the bases for kerT, V, and imT we have constructed above, we get

dim(imT) + dim(kerT) = ℓ+ k = dimV

as claimed, since there are ℓ T (vj)’s, k ui’s, and k + ℓ ui’s and vj ’s together.

98

Consequences. We can now give some immediate consequences of the Rank-Nullity Theorem,
which mimic things we previously saw for matrices and which now hold for linear transformations
between finite-dimensional vector spaces in general. Suppose that V and W are finite dimensional
and that T : V → W is a linear transformation. Then:

• if dimV = dimW , then T is injective if and only if it is surjective,

• if T is injective, then dimV ≤ dimW , and

• if T is surjective, then dimV ≥ dimW .

In terms of matrices, the first is the analog of the claim that a square matrix is injective if and only
if it is surjective, the second is the analog of the claim that an injective matrix must have more
rows than columns, and the third the claim that a surjective matrix must have more columns than
rows. To restate the second and third claims: if dimV > dimW , there can be no injective map
V → W , and if dimV < dimW , there can be no surjective map V → W .

Indeed, by Rank-Nullity we have

dimV = dim(kerT) + dim(imT).

If T is injective, dim(kerT) = {0} so dimV = dim(imT) in this case. Since imT is a subspace of
W , dim(imT) ≤ dimW so dimV ≤ dimW , which gives the second claim. If dimV = dimW , we
get dim(imT) = dimW so imT = W and hence T is surjective, which gives the forward direction
of the first claim.

Instead if T is surjective, then imT = W so dim(imT) = dimW and rank-nullity gives

dimV = dim(kerT) + dimW

in this case. Thus dimV ≥ dimW , which gives the third claim. If dimV = dimW , then the
equality above gives dim(kerT) = 0, so T is injective, which gives the backwards direction of the
first claim.

Be careful in infinite dimensions. We finish we pointing out that the first claim above is not
true in the infinite-dimensional setting, which helps to illustrate why it finite-dimensional spaces
are so special. Define the transformations L,R : R∞ → R∞ by

L(x1, x2, x3, . . .) = (x2, x3, x3, . . .)

and
R(x1, x2, x3, . . .) = (0, x1, x2, . . .).

(“L” stands for “left shift” since this map takes an infinite sequence and shifts everything to
the left one space after dropping the first term, and “R” stands for “right shift” since this map
shifts everything to the right one space after inserting a zero in the first term.) These are both
linear, as you can check. Moreover, L is surjective but not injective, while R is injective but not
surjective, which shows that for a linear maps from an infinite-dimensional space to itself injective
and surjective to not imply each other. (The point being that these two do imply each other for
linear maps from a finite-dimensional space to itself as a consequence of the rank-nullity theorem.)

Incidentally, these maps also illustrate another property of compositions which doesn’t hold
in infinite dimensions. We previously saw that for square matrices A and B, then AB = I then

99

BA = I as well. The same is actually true of linear maps between any finite-dimensional spaces of
the same dimension. However, in the infinite-dimensional example above, we have

LR = identity but RL ∕= identity,

showing that the analog of “AB = I if and only if BA = I” is not true for linear transformations
from an infinite-dimensional space to itself. The fact that there is not easy analog of the rank-
nullity theorem in infinite dimensions is part of the reason why infinite-dimensional spaces are so
much harder to work with in general.

Lecture 30: Coordinates

Warm-Up. Suppose that A is an m×n matrix. We claim the linear transformation A : Rn → Rm

which A defines is injective if and only rankA = n and hence can only be possible if m ≥ n, and
surjective if and only if rankA = m and hence can only be possible if m ≤ n. These are actually
both things we could have justified a long time ago using reduced row-echelon forms and pivots, but
here we approach them using the rank-nullity theorem, which gives a much simpler justification.

Rank-Nullity gives
n = dim(imA) + dim(kerA).

A is injective if and only if kerA = {0}, which is true if and only if dim(kerA) = 0, which is thus
true if and only if dim(imA) = n, or equivalently rankA = n. In particular, this means that A
must have as many rows as columns since if m < n then rankA ≤ m < n. The point is that an
injective transformation cannot map an n-dimensional space into a lower dimensional one.

A is surjective if and only if imA = Rm, which is true if and only if dim(imA) = m, or
equivalently rankA = m. (This part does not require rank-nullity.) In particular, since n =
dim(imA)+dim(kerA), this implies that n−m = dim(kerA) is nonnegative, so n ≥ m. The point
is that a surjective transformation cannot map an n-dimensional space onto a higher dimensional
one.

Motivation for coordinates. The usual way we draw R2 as the xy-plane uses a specific basis,
namely the basis consisting of e1 = [10] and e2 = [01]. When we describe a point in R2 using
coordinates [xy], what we really mean is that x and y are the scalars required to express this vector
as a linear combination of this specific bases. Geometrically, this basis determines two sets of axes:
span {e1} and span {e2}, and the coordinates x, y tells us how far we have to move along these two
axes to reach our given point.

However, there is nothing inherently special about this specific basis, and we could do something
similar using a different basis instead! Indeed, consider the basis for R2 consisting of v1 = [10] and
v2 = [11]. Visually, this gives us a new set of axes: span {v1} and span {v2}, which are the usual
x-axis and the line y = x respectively. The point is that we can also use “coordinates” with respect
to these set of axes to describe any vector in R2. If [xy] ∈ R2 (here we are taking x, y to be the
usual x and y coordinates), we have

󰀗
x
y

󰀘
= (x− y)

󰀗
1
0

󰀘
+ y

󰀗
1
1

󰀘
,

so we would say that the coordinates of [xy] relative to this new basis are x−y and y. Geometrically,
this means we have to move a distance of x − y “along” the v1-axis and y “along” the v2-axis to
reach our given point:

100

This idea works more generally in any finite-dimensional vector space, since all we need to talk
about coordinates is a specific choice of basis. This will give us a new interpretation of the notion
of an isomorphism, and we’ll lead to further instances in which picking the “right” isomorphism
can help to simplify a problem.

Definition of coordinates. Let V be a finite-dimensional vector space over K and let v1, . . . , vn be
a basis of V . The coordinates of a vector v ∈ V relative to this basis are the scalars a1, . . . , an ∈ K
which satisfy

v = a1v1 + · · ·+ anvn.

The fact that such scalars exist and are unique comes from the fact that v1, . . . , vn forms a basis
of V . The vector in Kn which encodes these scalars is known as the coordinate vector of v relative
to the basis B = {v1, . . . , vn}:

[v]B =

󰀵

󰀹󰀷
a1
...
an

󰀶

󰀺󰀸 .

(The subscript B is just indicating which basis we are taking coordinates with respect to.) The
point is that by working with coordinates, we can in some sense interpret elements of V as if they
were vectors in Kn, which is an idea we’ll elaborate on as we move forward.

Linearity of coordinates. One key property of coordinate vectors is that they are linear, in the
sense that they satisfy the following properties:

[x+ y]B = [x]B + [y]B and [cx]B = c[x]B for x, y ∈ V and c ∈ K.

Indeed, say that

[x]B =

󰀵

󰀹󰀷
a1
...
an

󰀶

󰀺󰀸 and [y]B =

󰀵

󰀹󰀷
b1
...
bn

󰀶

󰀺󰀸

are the coordinate vectors of x and y respectively. This means that

x = a1v1 + · · ·+ anvn and y = b1v1 + · · ·+ bnvn.

Then
x+ y = (a1 + b1)v1 + · · ·+ (an + bn)vn,

101

so the coordinates of x+ y relative to B are a1 + b1, . . . , an + bn and hence

[x+ y]B =

󰀵

󰀹󰀷
a1 + b1

...
an + bn

󰀶

󰀺󰀸 = [x]B + [y]B

as claimed. Moreover, if c ∈ K, then cx = ca1v1 + · · ·+ canvn, so

[cx]B =

󰀵

󰀹󰀷
ca1
...

can

󰀶

󰀺󰀸 = c[x]B,

also as claimed.

Isomorphisms with Kn. To put the above facts into the right context, consider the function
V → Kn which assigns to an element of V its coordinate vector relative to the basis B:

v 󰀁→ [v]B.

The fact that [x+ y]B = [x]B + [y]B says that this function preserves addition, while the fact that
[cx]B = c[x]B says that this function preserves scalar multiplication. Hence this function is a linear
transformation, which we call the coordinate transformation associated to B. In other words, the
operation of “taking coordinates” is a linear one.

In fact, we claim that this coordinate transformation is actually an isomorphism. Indeed, if
[v]B = 0, then

v = 0v1 + · · ·+ 0vn = 0+ · · ·+ 0 = 0,

so the only vector with all coordinates equal to 0 is the zero vector, and hence the coordinate
transformation is injective. Second, given any

󰀵

󰀹󰀷
a1
...
an

󰀶

󰀺󰀸 ∈ Kn,

we can always find an element of V which has this specific vector as its coordinate vector—namely
whatever

v = a1v1 + · · ·+ anvn

is. This says that coordinate transformations are surjective, so they are isomorphisms as claimed.
The point is that working with coordinates (after picking a basis) indeed gives a way to think of V
as if it were Kn, so questions about V can be recast as questions about Kn instead.

Moreover, we claim that two different choices of basis B = {v1, . . . , vn} and B′ = {w1, . . . , wn}
give different coordinate transformations, or equivalently different isomorphisms between V and
Kn. Or said another way, if B and B′ describe the same coordinate transformation, then B and B′

are actually the same. Indeed, if B and B′ give the same coordinate transformation, then

[x]B = [x]B′ for any x ∈ V.

In particular, [vi]B = [vi]B′ for any basis vector in B. The coordinate vector of vi relative to B is

[vi]B = ei

102

since to express vi in terms of the basis B = {v1, . . . , vn} we need coefficients as follows:

vi = 0v1 + · · ·+ 1vi + · · ·+ 0vn.

Thus ei would also be the coordinate vector of vi relative to the basis B′, meaning that the
expression for vi as a linear combination of w1, . . . , wn is

vi = 0w1 + · · ·+ 1wi + · · ·+ 0wn = wi,

and hence vi = wi for each i. This shows that B and B′ are in fact the same basis. The point
here is that a basis is completely determined by the coordinate transformation it induces: given a
coordinate transformation V → Kn, there can only be one basis which gives rise to it.

Examples. For the basis B = {1, x, . . . , xn} of Pn(K), the coordinates of a polynomial p(x) relative
to B are simply the coefficients of the various powers of x in that polynomial, so the coordinate
transformation Pn(K) → Kn+1 this induces is

a0 + a1x+ · · ·+ anx
n 󰀁→

󰀵

󰀹󰀹󰀹󰀷

a0
a1
...
an

󰀶

󰀺󰀺󰀺󰀸
.

For the basis B′ = {E11, E12, . . . , Emn} of Mmn(K) (where Eij is the m× n matrix have a 1 in
the ij-th location and zeroes everywhere else), the coordinates of a matrix relative to B′ are simply
the entries of that matrix, so the resulting coordinate transformation Mmn(K) → Kmn is

󰀵

󰀹󰀷
a11 · · · a1n
...

. . .
...

am1 · · · amn

󰀶

󰀺󰀸 󰀁→

󰀵

󰀹󰀹󰀹󰀷

a11
a12
...

amn

󰀶

󰀺󰀺󰀺󰀸
.

Linear transformations via coordinates. As our first real indication that coordinates are useful
things to consider, we can now answer the following question: linear transformations Rn → Rm

are always described by matrices, so is there an analogous claim that can be made about linear
transformations V → W between finite-dimensional vector spaces in general? In other words, in
what sense are linear transformations between arbitrary vector spaces “described” by matrices?

Suppose that V is an n-dimensional vector space over K with basis B and that T : V → V is a
linear transformation. (We’ll consider more general linear transformations later.) Let S : V → Kn

denote the isomorphism determined by the coordinate transformation obtained by B:

S(v) = [v]B for all v ∈ V.

We have the following diagram:

V Kn

V Kn

S

T STS−1

S

103

The linear transformation on the right STS−1 : Kn → Kn is the composition obtained by first
using S−1 to move from the upper right to upper left, then T to move from the upper left to
lower left, and then S to move from the lower left to the lower right—the standard matrix of this
transformation is called the matrix of T relative to B and is denoted by [T]B, so

[T]B = STS−1.

The point is that this is the matrix which in a sense “characterizes” T itself. To be precise, this
matrix satisfies the following property:

[Tv]B = [T]B[v]B for any v ∈ V,

which we can see by following following the different arrows in the diagram above: starting with
v ∈ V in the upper left corner, applying S and then [T]B = STS−1 (so following the top arrow
and then the right arrow) gives [T]B[v]B, whereas applying T and then S (so following the left
arrow and then the bottom arrow gives [Tv]B, so since these results should be the same we get the
equality stated above. We’ll see how to describe [T]B more explicitly next time.

The idea is that to know what Tv actually is, all we need to know are its coordinates relative
to B, and this says that these coordinates can be obtained by multiplying the coordinate vector of
v itself by the matrix [T]B. You should view this equation as analogous to T (x) = Ax for linear
transformations T : Rn → Rn; in our new setting it doesn’t make sense to literally multiply an
element of V by a matrix if V is not Kn, but we are saying that nonetheless we can interpret T as
it were the same as matrix multiplication by using coordinates to interpret elements of V in terms
of vectors in Kn. This is an incredibly fruitful idea, as we’ll see next quarter.

Example. We finish with one example which starts to allude to the power of considering different
types of coordinates. Let T : R2 → R2 be the linear transformation which reflects vectors across
the line y = x, and let v1 = [11] and v2 =

󰀅−1
1

󰀆
. We consider the non-standard basis B = {v1,v2}

for R2. Then

[v1]B =

󰀗
1
0

󰀘
and [v2]B =

󰀗
0
1

󰀘
.

Also, Tv1 = v1 and Tv2 = −v2, so

[Tv1]B =

󰀗
1
0

󰀘
and [Tv2]B =

󰀗
0
−1

󰀘
.

Thus the matrix [T]B of T relative to B must satisfy
󰀗
1
0

󰀘
= [T]B

󰀗
1
0

󰀘
and

󰀗
0
−1

󰀘
= [T]B

󰀗
0
1

󰀘
,

so the matrix of T is

[T]B =

󰀗
1 0
0 −1

󰀘
.

Note that the form this matrix takes makes sense geometrically: if we consider a new set of
axes for R2 given the line y = x and the line y = −x, this matrix says that T does nothing to
points on the first axis (because of the [10] column) and that T “flips” points on the second axis
(because of the

󰀅
0
−1

󰀆
column), which is precisely what reflection across y = x should do. If we view󰀅

1 0
0 −1

󰀆
as giving a linear transformation R2 → R2 with respect to the usual x, y coordinates, it

would describe reflection across the x-axis, so the point is that reflection across y = x instead can
also be described the same matrix, only we have to adjust the axes we are using to do so. We say
that these two reflections are similar transformations, which is a term we’ll give a precise meaning
to next time.

104

Lecture 31: More on Coordinates

Warm-Up. Suppose that V is an n-dimensional vector space over K and that S : V → Kn is an
isomorphism. We show that there is a basis of V such that S is the coordinate transformation
relative to this basis. This shows that any isomorphism from V to Kn can be interpreted as if
it were a coordinate transformation—last time we showed that coordinate transformations always
give isomorphisms, and here we are saying that all isomorphisms V → Kn arise in this way. The
point is that picking a basis of V to work with respect to (via coordinates) is the same as picking
an isomorphism V → Kn.

The idea is that if we did have our basis B = {v1, . . . , vn} already in mind, we are requiring
that applying S is the same as taking coordinates relative to this basis, so

S(v) = [v]B for all v.

But from this we can reconstruct what the basis B must actually be: vi must be the vector whose
coordinate vector is ei, meaning that vi must satisfy

S(vi) = ei, or equivalently vi = S−1(ei).

Thus the basis we are looking for must be

B = {S−1(e1), . . . , S
−1(en)}.

Note that this is indeed a basis of V : since S is an isomorphism, S−1 : Kn → V is an isomor-
phism, and we saw on Problem 3 of Homework 8 that isomorphisms sends bases to bases, so
S−1(e1), . . . , S

−1(en) forms a basis of V since e1, . . . , en forms a basis of Kn.
We now verify that S is indeed the coordinate transformation determined by this basis. Take

v ∈ V and write it in terms of our basis as

v = a1S
−1(e1) + · · ·+ anS

−1(en).

Then

S(v) = S(a1S
−1(e1) + · · ·+ anS

−1(en))

= a1SS
−1(e1) + · · ·+ anSS

−1(en)

= a1e1 + · · ·+ anen

=

󰀵

󰀹󰀷
a1
...
an

󰀶

󰀺󰀸

= [v]B,

which shows that S is the desired coordinate transformation.

Matrix of linear map.

Derivative example.

Reflections.

Orthogonal projections.

105

Lecture 32: Change of Bases

Warm-Up. compositions

Example. diagonalizable

Similarity.

Diagonalizability.

Powers.

Quadratic forms.

Other vector spaces.

106

