Math 300: Final Exam Solutions
Northwestern University, Spring 2017

1. Give an example of each of the following with brief justification.
(a) A true implication P = () whose converse () = P is false.
(b) A function f : R — R which is injective but not surjective.
(c) A countable subset of the power set of R.

Solution. (a) The implication “If z > 3, then x > 1”7 is true, but the the converse “If x > 1, then
x > 3” is not since x = 2 is a counterexample.

(b) The function f defined by f(x) = e* is injective since e* = e¥ implies z = y, but it is not
surjective since there is no x satisfying e* = 0.

(c) The set {{n} | n € N}, which is the set whose elements are singletons {n} for n € N, is a
subset of P(R) since each {n} is in P(R), and is countable since there are only countably many
choices for n. O

2. (a) Show that for any € > 0, there exists N € N such that % < €. You may take for granted the
fact that for any « € R, there exists M € N such that z < M.
(b) Show that if z < y 4+ % for all n € N, then z < y.

Proof. (a) Let € > 0. Then % € R, so there exists M € N such that % < M. Rearranging this
inequality gives ﬁ < €, where the direction of the inequality is maintained since M > 0. This gives
the desired result.

(b) By way of contrapositive, suppose x > y. Then x —y > 0, so by part (a) there exists N € N
such that % <x—vy. Then x >y + %, which justifies the contrapositive. O

3. Let A and B be sets. Show that
(AUB)—(ANB)=(A—B)U(B—-A).

(This is known as the symmetric difference of A and B, and consists of all elements which belong
to either A or B, but not both.)

Proof. Let x € (AUB)— (ANB). Then x € AUB and « ¢ AN B. Since x € AU B, we have that
x € Aorxz € B. Suppose z € A. Sincex ¢ ANB, x ¢ Aor xz ¢ B. But since we are assuming
x € A, it must be that x ¢ B. Hence x € A — B, soz € (A— B)U (B — A). Similarly, if z € B,
then x ¢ AN B implies that ¢ A, so x € B— A and again x € (A — B)U (B — A). Thus

(AUB)— (ANB) C (A— B)U (B — A).

Now let x € (A— B)U (B — A). Then x € A— B or z € B — A; without loss of generality
we may assume © € A — B. Then z € A and x ¢ B. Since z € A, x € AU B, and since z ¢ B,
x¢ ANDB. Thus x € (AUB) — (AN B), so

(AUB)—(ANB)2(A-B)U(B—-A).
Since both containments hold we conclude that (AUB)—(ANB) = (A—B)U(B—A) as claimed. [

4. Suppose f: A — B is a function and that S is a subset of B.
(a) Show that f(f~1(9)) C S.
(b) Show that if f is surjective, then f(f~%(S)) = S.



Proof. (a) Let y € f(f71(S)). Then there exists z € f~1(S) such that f(z) = y. But by definition
of f71(S), f(z) € S,s0y = f(x) € S. Hence f(f~(S)) C S.

(b) We need only show the backwards containment. Let b € S. Since f is surjective, there exists
a € A such that f(a) =b. Since f(a) = b € S, this means that a € f~1(5), so f(a) = b is actually
in f(f71(S)). Thus S C f(f~1(S)), and combined with part (a) we thus have equality. O

5. Determine whether or not the function f : R* — R? defined by
[y, 2) =(x+y+2zy+z2)
is invertible.
Solution. This function is invertible. Indeed, we claim that g : R3 — R? defined by
g(a,b,c) = (a—b,b—c,c)
is the inverse of f. We check:
9(f(w,y,2) =g(x+y+zy+z2)=(r+ty+z-ly+zly+z - 22 = (2,9,2),
so go f =id, and
flgla,b,¢)) = fla—b,b—c,c)=(Ja—b]+[b—c]+c[b—c]+cc)=(a,b,c),
so fog=1id as well. Thus f is invertible with inverse g. O

6. Define an equivalence relation on R by saying x ~ y if z —y € Q. Determine, with justification,
whether each equivalence class is countable or uncountable, and whether the set of equivalence
classes is countable or uncountable.

Proof. Fix x € R. Then the equivalence class of x consists of all y € R such that x — y is some
rational number. But this means that y is of the form x + (rational), so

[z] ={z+7r|reR}

Since Q is countable, there are only countably many choices for r, so there are only countably many
elements in [x]. Hence each equivalence class [z] is countable.

Now, the union of all equivalence classes is all of R, so if there were only countably many
equivalence classes

[1‘1], [.’EQ], [333], PN

we would have that
R =[z1]U[zo] U [z3]U---

is a countable union of countable sets, so it would be countable itself. But R is uncountable, so there
must be uncountably many equivalence classes, so the set of equivalence classes is uncountable. [

7. A sequence (r1,72,73,...) of rational numbers is eventually constant if there exists r € Q and
N € N such that r,, = r for all n > N. (In other words, all terms beyond some point are the same.)
Show that the set of sequences of rational numbers which are eventually constant is countable.



Proof. For each N € N and r € Q, let
SNy i=A(r1,r2,...) € Q¥ | r, =r forn > N}.

So, Sy, is the set of sequences of rational numbers which are r beyond the N-th term. Such
a sequence is thus fully characterized by the first N terms rq,...,ry and the number r, so the
function Sy, — QN T defined by

(ri,7ro, . s IN, T T Ty o) > (T1, 72y oo o, TN, T)

is bijective. Since QN*! is a product of finitely many countable sets, it is countable so S N 1S
countable as well. Hence, for each r € QQ, the set

Sy = Sl,r U S277» U 5377 U---

of sequences which are eventually r is a countable union of countable sets, so it is countable. The
set of eventually constant sequences is then the union of the sets S, for varying r:

U s

reQ
S0 it too is a countable union of countable sets and is thus countable as well. O
8. Show that the set Q> of all sequences (r1,72,73,...) of rational numbers is uncountable by
showing directly that given any infinite list of elements of Q°°, there always exists an element of

Q% not included in that list. (Or in other words, given any function N — Q°°, there exists an
element of Q* not included in its image.)

Proof. Let f: N — Q% be any function. List the elements in the image as:

f(1) = (r11, 12,113, - - -)
f(2) = (ra1, 722,723, .. .)
f(?’) = (7’31, 732,733, .. )

where each r;; is in Q. Define the sequence (y1,¥2,...) by picking y; to be different from 74;; say:

Vi s if r;; = 3.

Then (y1,y2,ys,...) € Q> is not equal to any f(n) since it differs from f(n) in the n-th term, so
it is not in the range of f. Hence f is not surjective, so no bijection between N and Q> can exist,
so Q% is uncountable. O



