Math 300: Final Exam Solutions Northwestern University, Winter 2019

1. Give an example of each of the following with brief justification.
(a) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is surjective but not injective.
(b) Nonempty subsets A_{n} of \mathbb{Z} indexed by $n \in \mathbb{N}$ such that $\bigcap_{n \in \mathbb{N}} A_{n}$ is empty.
(c) A subset of \mathbb{R} not containing π but whose supremum is π.

Solution. (a) The function

$$
f(x)= \begin{cases}\ln x & x>0 \\ 0 & x \leq 0\end{cases}
$$

works. This is surjective since given any $y \in \mathbb{R}, e^{y} \in \mathbb{R}$ satisfies $f\left(e^{y}\right)=y$, and it is not injective since many things get sent to 0 .
(b) For each $n \in \mathbb{N}$ set $A_{n}=\{n\}$. Each A_{n} contains only one element, and this element is different for different n, so the intersection of all these sets is indeed empty.
(c) The interval $(0, \pi)$ works. This certainly does not contain π, but the fact that its elements get arbitrarily close to π imply that the supremum is π. (To be more precise, π is an upper bound of this interval and given any $\epsilon>0$, we can find an element in this interval which is larger than $\pi-\epsilon$, so nothing smaller than π can be an upper bound.)
2. Let A and B be the following sets:

$$
A=\{n \in \mathbb{Z} \mid n=7 k-17 \text { for some } k \in \mathbb{Z}\}
$$

and

$$
B=\left\{n \in \mathbb{Z} \mid n=14 k^{3}+4 \text { for some } k \in \mathbb{Z}\right\} .
$$

Show that $B \subseteq A$ and $A \neq B$.
Proof. Let $n \in B$. Then there exists $k \in \mathbb{Z}$ such that $n=14 k^{3}+4$. We can rewrite this expression as

$$
n=14 k^{3}+4=7\left(2 k^{2}+3\right)-17,
$$

which since $2 k^{2}+3 \in \mathbb{Z}$ shows that n is of the form required of an element in A. Hence $n \in A$ so $B \subseteq A$.

Note that $-17 \in A$ since $-17=7(0)-17$. If $-17 \in B$, then there exists $k \in \mathbb{Z}$ such that $-17=14 k^{3}+4$, which requires that $-21=14 k^{3}$ and hence $-\frac{3}{2}=k^{3}$. But there is no integer which satisfies this condition, so -17 cannot be in B. Hence -17 is an element of A which is not in B, so $A \neq B$.
3. (a) Prove the following set containment:

$$
[0,1) \subseteq \bigcup_{\epsilon>0}[0,1-\epsilon)
$$

(b) Prove the following set containment:

$$
\bigcap_{\epsilon>0}[0,1+\epsilon] \subseteq[0,1]
$$

Proof. (a) Let $x \in[0,1)$. Set $\epsilon^{\prime}=\frac{1-x}{2}$, which is positive since $x<1$. Then

$$
\epsilon^{\prime}=\frac{1-x}{2}<1-x, \text { so } 0 \leq x<1-\epsilon^{\prime}
$$

Hence $x \in\left[0,1-\epsilon^{\prime}\right)$ for this specific $\epsilon=\epsilon^{\prime}$, so $x \in \bigcup_{\epsilon>0}[0,1-\epsilon)$ and thus $[0,1)$ is a subset of this union as claimed. (The value of ϵ^{\prime} we used was found by working backwards from the inequality $x<1-\epsilon$ we wanted to obtain.)
(b) To say that $x \in \bigcap_{\epsilon>0}[0,1+\epsilon]$ is to say that $x \in[0,1+\epsilon]$ for all $\epsilon>0$, or in other words that $0 \leq x \leq 1+\epsilon$ for all $\epsilon>0$. Thus we must show: if $x \in[0,1+\epsilon]$ for all $\epsilon>0$, then $x \in[0,1]$.

For this we prove instead the contrapositive: if $x \notin[0,1]$, then there exists $\epsilon>0$ such that $x \notin[0,1+\epsilon]$. So, suppose $x \notin[0,1]$. Then either $x<0$ or $1<x$. In the first case then for sure $x \in[0,1+\epsilon]$ regardless of the value of ϵ, so there is nothing left to do in this case. So suppose $1<x$ and set $\epsilon=\frac{x-1}{2}$, which is positive since $1<x$. Then

$$
\epsilon=\frac{x-1}{2}<x-1, \text { so } 1+\epsilon<x
$$

and hence $x \notin[0,1+\epsilon]$. This proves the required contrapositive, so we conclude that the given intersection is a subset of $[0,1]$ as claimed. (The ϵ value we used in the contrapositive was found by working backwards from the inequality $1+\epsilon<x$ we needed in order to guarantee that $x \notin$ $[0,1+\epsilon]$.)
4. Suppose $f: A \rightarrow B$ is a function and that $X, Y \subseteq A$.
(a) Show that $f(X)-f(Y) \subseteq f(X-Y)$.
(b) Show that if f is injective, then $f(X-Y) \subseteq f(X)-f(Y)$.

Proof. (a) Let $b \in f(X)-f(Y)$. Then $b \in f(X)$ and $b \notin f(Y)$. Since $b \in f(X)$, there exists $x \in X$ such that $f(x)=b$. But since $b \notin f(Y)$, there is nothing in Y which is sent to b, so in particular this x cannot be in Y. Hence $x \in X-Y$, so there is an element of $X-Y$ which is sent to b, meaning that $b \in f(X-Y)$. Hence $f(X)-f(Y) \subseteq f(X-Y)$.
(b) Let $b \in f(X-Y)$. Then there exists $x \in X-Y$ such that $f(x)=b$. Since $x \in X-Y$, $x \in X$ and $x \notin Y$. Since $x \in X$, we have $b=f(x) \in f(X)$. But since f is injective, there are no elements apart from x which are sent to b, so since this specific x is not in Y, there is hence nothing in Y which is sent to b. Thus $b \notin f(Y)$, so $b \in f(X)-f(Y)$, and we conclude that $f(X-Y) \subseteq f(X)-f(Y)$. (The injectivity of f was needed to guarantee that since $f(x)=b$ and $x \notin Y$, then $b \notin f(Y)$. If f were not injective the issue is that even though $x \notin Y$, there could still be some element of Y not equal to x which was also sent to b, in which case b would be in $f(Y)$.)
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
f(x, y)=(2 x-y-1, x+3) .
$$

(a) Show that f is surjective.
(b) Let S denote the subset of \mathbb{R}^{2} consisting of all points on the line $y=x$. Show that the preimage $f^{-1}(S)$ of S under f is also a line by finding an explicit equation of this line. Just write the equation down after you work it out-you do not have to prove formally that $f^{-1}(S)$ equals the line you find by showing that each is a subset of the other.

Proof. (a) Let $(a, b) \in \mathbb{R}^{2}$. Then

$$
f(b-3,2 b-a-7)=(2[b-3]-[2 b-a-7]-1,[b-3]+3)=(a, b),
$$

which shows that f is surjective. (The input point $(b-3,2 b-a-7)$ was found by determining what x and y should be in order to have $f(x, y)=(2 x-y-1, x+3)=(a, b)$.)
(b) The preimage of the line S consists of all inputs (x, y) for which $f(x, y)=(2 x-y-1, x+3)$ is one this line. But this requires that the two coordinates of $(2 x-y-1, x+3)$ be the same, which gives the condtion

$$
2 x-y-1=x+3 .
$$

This is the same as $y=x-4$, so the preimage of S is the line with equation $y=x-4$.
6. Define an equivalence relation on \mathbb{R}^{2} by saying

$$
(x, y) \sim(a, b) \text { if } 2(y-b)=-3(x-a)
$$

Show that the set of equivalence classes has the same cardinality as \mathbb{R}. (Careful: this is not asking about the cardinality of each equivalence class, but rather of the set whose elements are the equivalence classes.) Hint: Think about what each equivalence class looks like geometrically, and how you can characterize an entire class using a single real number.

Proof. The equivalence class of $[(x, y)]$ consists of all points (a, b) satisfying

$$
2(y-b)=-3(x-a) .
$$

But this is the same as saying that (a, b) lies on the line of slope $-\frac{3}{2}$ which passes through (x, y). So, each equivalence class is a line of slope $-\frac{3}{2}$, and we can uniquely characterize such a line using its x-intercept. For the line defined by [(x,y)], this x-intercept (i.e. the point a such that $(a, 0)$ on this line) is $\frac{1}{3}(2 y+3 x)$, so this number uniquely characterizes the entire equivalence class $[(x, y)]$.

If your answer said something along the lines of "there are as many equivalence classes as there are possible choices for x-intercepts, and there as many choices for this as there are real numbers", chances are you got full credit. But let us now be completely precise: we claim that the function from the set of equivalence classes to \mathbb{R} defined by

$$
f:[(x, y)] \mapsto \frac{1}{3}(2 y+3 x)
$$

is a bijection. First, this function is well-defined in the sense that if (a, b) gives the same equivalence class as (x, y), then the value $\frac{1}{3}(2 b+3 a)$ we get from this second point is the same as the value $\frac{1}{3}(2 y+3 x)$ from the equivalent point (x, y), so that the value of this function really only does depend on the equivalence class $[(x, y)]$ and not the specific point we choose to represent this equivalence class. Indeed, if $[(a, b)]=[(x, y)]$, then $(x, y) \sim(a, b)$, so $2(y-b)=-3(x-a)$ and rearranging terms and dividing by 3 does give

$$
\frac{1}{3}(2 y+3 x)=\frac{1}{3}(2 b+3 a)
$$

so that plugging in $[(x, y)]$ and $[(a, b)]$ into f give the same output.
Now, f is surjective since given $x \in \mathbb{R},(x, 0) \mapsto \frac{1}{3}(2(0)=3 x)=x$, or in other words the equivalence class of $(x, 0)$ is sent to x. To see that f is injective, suppose $[(x, y)]$ and $[(a, b)]$ get sent to the same value, meaning that

$$
\frac{1}{3}(2 y+3 x)=\frac{1}{3}(2 b+3 a) .
$$

Then $2 y+3 x=2 b+3 a$, so $2(y-b)=-3(x-a)$. Hence $(x, y) \sim(a, b)$, so $[(x, y)]=[(a, b)]$ as desired. Thus f is bijective, so the set of equivalence classes has the same cardinality as \mathbb{R}.
7. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to be periodic if there exists $N \in \mathbb{N}$ such that

$$
f(x+N)=f(x) \text { for all } x \in \mathbb{N} .
$$

(So, the values of f begin to repeat after some point: $f(N+1)=f(1), f(N+2)=f(2)$, etc.) Show that the set of periodic functions from \mathbb{N} to \mathbb{N} is countable.

Hint: For a fixed $N \in \mathbb{N}$, consider the set X_{N} of functions from \mathbb{N} to \mathbb{N} satisfying the periodic condition $f(x+N)=f(x)$ for that specific N. Show that each X_{N} is countable, making use of the fact that such a function is characterized by the values of $f(1), f(2), \ldots, f(N)$ since other values beyond this are determined by the periodic condition.

Proof. Fix $N \in \mathbb{N}$ and let X_{N} denote the set of functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(x+N)=f(x)$ for all $x \in \mathbb{N}$. For such a function f, the values of $f(1), f(2), \ldots, f(N)$ can be anything in \mathbb{N}, but once these are specified all other values are determined since $f(N+1)=f(1), f(N+2)=$ $f(2), \ldots, f(2 N+1)=f(1), f(2 N+2)=f(2), \ldots$ and so on. This implies that the function $X_{N} \rightarrow \mathbb{N}^{N}$ defined by

$$
f \mapsto(f(1), f(2), \ldots, f(N))
$$

is bijective. Indeed, it is injective since if $f, g \in X_{N}$ satisfy

$$
f(1)=g(1), f(2)=g(2), \ldots, f(N)=g(N),
$$

then we must have $f(x)=g(x)$ for all $x \in \mathbb{N}$ by the periodic condition, so that f and g are the same function. The function above is surjective since given any $\left(n_{1}, \ldots, n_{N}\right) \in \mathbb{N}^{N}$, we can define a periodic function $f: \mathbb{N} \rightarrow \mathbb{N}$ which has these as its initial values by defining

$$
f(1)=n_{1}, f(2)=n_{2}, f(3)=n_{3}, \ldots f(N)=n_{N}
$$

and then using the fact that $f(x+N)$ should be equal to $f(x)$ for all x to define the values of f for inputs beyond N.

Thus we find that X_{N} has the same cardinality as \mathbb{N}^{N}, and since the latter is a product of finitely many countable sets, it is countable and so X_{N} is countable for each $N \in \mathbb{N}$. The set of all periodic functions $\mathbb{N} \rightarrow \mathbb{N}$ is the union of these X_{N} :

$$
\{\text { periodic functions } \mathbb{N} \rightarrow \mathbb{N}\}=\bigcup_{n \in \mathbb{N}} X_{n}
$$

so since this is a union of countably many countable sets, it is countable as well.
8. Show that the set of all functions from \mathbb{N} to \mathbb{N} is uncountable. Hint: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is determined by the infinite sequence containing its values:

$$
(f(1), f(2), f(3), \ldots)
$$

which is an element of \mathbb{N}^{∞}. Thus, the set of functions from \mathbb{N} to \mathbb{N} has the same cardinality as \mathbb{N}^{∞}, which can you take for granted. So, in other words, the problem is really to show that \mathbb{N}^{∞} is uncountable, which you must do directly without quoting any result from class.

Proof. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is determined by the sequence of its values:

$$
(f(1), f(2), f(3), \ldots)
$$

Indeed, if f and g are two functions which give the same sequence of values, then $f(n)=g(n)$ for all $n \in \mathbb{N}$ so that f and g are the same function. And, given any sequence ($n_{1}, n_{2}, n_{3}, \ldots$) of natural numbers, there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which has precisely these values since we can define $f(k)$ to be n_{k} for all $k \in \mathbb{N}$. This shows that the set of functions $\mathbb{N} \rightarrow \mathbb{N}$ has the same cardinality as the set \mathbb{N}^{∞} of such sequences, or more precisely that the function from the set of functions $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}^{∞} defined by

$$
f \mapsto(f(1), f(2), f(3), \ldots)
$$

is bijective. Thus, to show that the set of functions $\mathbb{N} \rightarrow \mathbb{N}$ is uncountable we need only show that \mathbb{N}^{∞} is uncountable.

Let $h: \mathbb{N} \rightarrow \mathbb{N}^{\infty}$ be any function and list the elements in its image in the following way:

$$
\begin{aligned}
h(1) & =\left(x_{11}, x_{12}, x_{13}, \ldots\right) \\
h(2) & =\left(x_{21}, x_{22}, x_{23}, \ldots\right) \\
h(3) & =\left(x_{31}, x_{32}, x_{33}, \ldots\right) \\
\vdots & \vdots
\end{aligned}
$$

Define $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \mathbb{N}^{\infty}$ by setting

$$
y_{n}= \begin{cases}4 & \text { if } x_{n n}=5 \\ 5 & \text { if } x_{n n} \neq 5\end{cases}
$$

Then $y \neq h(n)$ for any $n \in \mathbb{N}$ since the sequence defining y and the sequence given by $f(n)$ differ in their n-th terms. Hence y is not in the image of h, so h is not surjective. Thus no function from \mathbb{N} to \mathbb{N}^{∞} can be surjective, so not such function can be bijective either. Since \mathbb{N}^{∞} is infinite but not countable, we conclude that it is uncountable, and hence the set of functions from \mathbb{N} to \mathbb{N} is uncountable too.

