Math 320-1: Final Exam
Northwestern University, Fall 2014

Name:

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A monotone subsequence of the sequence $x_{n}=\cos \frac{n \pi}{2}$.
(b) A function f on \mathbb{R} which is differentiable only at 0 .
(c) A nonnegative, nonconstant integrable function f on $[0,1]$ such that $\int_{0}^{1} f(x) d x=0$.
(d) A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f^{\prime} is not integrable on $[1,3]$
(e) A differentiable function f on $(-1,1)$ such that $f^{\prime}(x)=|x|$ for all $x \in(-1,1)$.
2. (15 points) Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and bounded with supremum M. Show that for any $\epsilon>0$ there exists a rational $c \in(a, b)$ such that $M-\epsilon<f(c)$.
3. (10 points) Define the sequence $\left(x_{n}\right)$ by

$$
x_{n}=\frac{\sin 1}{1^{2}}+\frac{\sin 2}{2^{2}}+\frac{\sin 3}{3^{2}}+\cdots+\frac{\sin n}{n^{2}} \text { for } n \geq 1 .
$$

Show that $\left(x_{n}\right)$ is Cauchy. Hint: For any $n \geq 1, \frac{1}{(n+1)^{2}} \leq \frac{1}{n}-\frac{1}{n+1}$.
4. (15 points) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{4} \cos \frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that f is continuously differentiable at 0 but not twice differentiable at 0 .
5. (15 points) Define $f:[-5,5] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{x^{2}} & -5 \leq x<0 \\ 0 & x=0 \\ -5 \cos x^{2} & 0<x \leq 5\end{cases}
$$

Show that f is integrable on $[-5,5]$.
6. (15 points) Suppose that $f:[-5,5] \rightarrow \mathbb{R}$ is the function from the previous problem:

$$
f(x)= \begin{cases}e^{x^{2}} & -5 \leq x<0 \\ 0 & x=0 \\ -5 \cos x^{2} & 0<x \leq 5\end{cases}
$$

and define the function $F:[0,2] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{0}^{x^{2}} f(t) d t
$$

Show that $|F(x)-F(y)| \leq 20|x-y|$ for all $x, y \in[0,2]$, and hence that F is uniformly continuous.
7. (15 points) Suppose that $f:[1,2] \rightarrow \mathbb{R}$ is continuous and that for any $c \in(1,2)$,

$$
3 \int_{1}^{c} e^{x} f(x) d x-\int_{c}^{2} e^{x} f(x) d x=0
$$

Show that $f(x)=0$ for all $x \in[1,2]$. (You cannot use the similar problem from the practice final without proof.)

