Math 320-1: Final Exam Northwestern University, Fall 2015

Name: \qquad

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A nonempty bounded set $S \in \mathbb{R}$ such that $(\sup S)^{2} \neq \sup S^{2}$, where $S^{2}=\left\{x^{2} \mid x \in S\right\}$.
(b) A uniformly continuous differentiable function on $(0, \infty)$ with unbounded derivative.
(c) A non-integrable function f on $[2,3]$ such that $f(2)=f(3)=10$.
(d) A positive integrable function f on $[1,2]$ such that $\frac{1}{f}$ is not integrable on $[1,2]$
(e) A differentiable function $f:(1,2) \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=\sin \left(x^{2}\right)$ for all $x \in(1,2)$.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose that S is a nonempty bounded subset of \mathbb{R}. Show that there exists a sequence $\left(x_{n}\right)$ with each $x_{n} \in S$ which converges to $\inf S$. Hint: For any $\epsilon>0, \inf S+\epsilon$ is not a lower bound of S.
3. (10 points) Define the sequence $\left(x_{n}\right)$ by

$$
x_{n}=\frac{2}{1^{3}}+\frac{2}{2^{3}}+\frac{2}{3^{3}}+\cdots+\frac{2}{n^{3}}
$$

Show that $\left(x_{n}\right)$ converges. You can use the fact from a previous homework assignment that the sequence $y_{n}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}$ converges.
4. (10 points) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable. Show that for any $x, y \in \mathbb{R}$ with $x \neq y$, there exists a rational c between x and y such that

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(c)\right|<\frac{1}{1000} .
$$

Hint: Use the Mean Value Theorem to rewrite $\frac{f(x)-f(y)}{x-y}$.
5. (10 points) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1-\frac{1}{n} & x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

is integrable on $[0,1]$ and determine the value of $\int_{0}^{1} f(x) d x$.
6. (10 points) Suppose $f:[0,5] \rightarrow \mathbb{R}$ is continuous and define $g:[0,5] \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}f(x) & x \neq 2,5 \\ 10 & x=2 \\ -4 & x=5\end{cases}
$$

Show that g is integrable on $[0,5]$. You cannot simply quote the practice problem which says that changing the value of an integrable function at a finite number of points still results in an integrable function - the point here is to prove this in the special case where we change the value at 2 points.
7. (10 points) Define $f:[-2,2] \rightarrow \mathbb{R}$ by

$$
f(t)= \begin{cases}\cos \frac{1}{t} & t \neq 0 \\ 1 & t=0\end{cases}
$$

and $F:[-2,2] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{-2}^{x^{4} e^{x}} t f(t) d t \text { for all } x \in[-2,2] .
$$

Show that $F^{\prime}(0)$ exists. Careful: f is not continuous at 0

