Math 320-1: Final Exam Northwestern University, Fall 2019

Name: \qquad

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A sequence which diverges but has a convergent subsequence.
(b) A function $f(x)$ for which $\lim _{x \rightarrow 0}|f(x)|$ exists but $\lim _{x \rightarrow 0} f(x)$ does not.
(c) A function which is continuous only at 1 and is nowhere zero.
(d) A differentiable function which is not twice-differentiable.
(e) An integrable function on $[1,3]$ which does not have an antiderivative.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Show that if $\left(x_{n}\right)$ converges, then $\left(x_{n}\right)$ is Cauchy. Hint: if x is the number to which $\left(x_{n}\right)$ converges, find a way to relate $\left|x_{m}-x_{n}\right|$ to expressions of the form $\left|x_{k}-x\right|$.
3. (10 points) Suppose $f:(0, \infty) \rightarrow \mathbb{R}$ is continuous and always positive. Show, by verifying the $\epsilon-\delta$ definition directly, that the function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by $g(x)=\frac{2}{3 f(x)}$ is continuous at any $a \in(0, \infty)$.
4. (10 points) Show that for any $x \in \mathbb{R}$ there exists c between 0 and x such that

$$
e^{x}=1+x+\frac{e^{c}}{2} x^{2}
$$

Hint: For a fixed $x \in \mathbb{R}$, define $h(y)=e^{y}-1-y-\left(\frac{e^{x}-1-x}{x^{2}}\right) y^{2}$ as a function of y. Verify that $h^{\prime}(0)=0$ and somehow use the Mean Value Theorem to get another point d between 0 and x at which $h^{\prime}(d)=0$, and then use the Mean Value Theorem again to get a point c at which $h^{\prime \prime}(c)=0$. The derivatives of h here are taken with respect to y. (This is proving a special case of Taylor's Theorem for the function $f(x)=e^{x}$, so you cannot use Taylor's Theorem here.)
5. (10 points) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and that P and Q are partitions of $[a, b]$. Show that

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

You cannot take it for granted that including more points in a partition can only make lower sums larger and upper sums smaller-rather, you should justify this as a first step. For this, first think about what happens if you throw an extra single point into your partition.
6. (10 points) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a function which agrees with $g(x)=\sin x$ except at two points $c<d$ in $(0,1)$. Show f is integrable on $[0,1]$ by showing that, for each $\epsilon>0$, there exists a partition P of $[0,1]$ for which $U(f, P)-L(f, P)<\epsilon$.
7. (10 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}5 \cos \left(\frac{1}{x^{2}}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

and define the function $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{-1}^{x^{3}} f(t) d t
$$

Show that F is differentiable on all of \mathbb{R}, and determine if it is continuously differentiable.

