Math 320-1: Final Exam Solutions
Northwestern University, Fall 2014

1. Give an example of each of the following. You do not have to justify your answer.
(a) A monotone subsequence of the sequence z,, = cos &,
(b) A function f on R which is differentiable only at 0.
(c¢) A nonnegative, nonconstant integrable function f on [0, 1] such that fol f(z)dx = 0.
(d) A differentiable function f : R — R such that f’ is not integrable on [1, 3]
(e) A differentiable function f on (—1,1) such that f/(x) = |z| for all z € (—1,1).

Solution. (a) The subsequence (z4y,) of terms indexed by a multiple of 4 is constant, so monotone.

(b) The function defined by f(z) = 22 for z € Q and f(x) = —2? for ¢ Q works. Note that
the function defined similarly but using « and —z instead of 2 and —z? does not work since this
function is not differentiable at 0: lim,_,o(f(z) — f(0))/(z — 0) does not exist in this case.

(¢) The function which is 0 everywhere except at 3 where f(1) =1 works, as does my favorite
function.

(d) The function defined by f(x) = (z — 2)?sin ﬁ for © # 2 and f(2) = 0 works, which is
just a modification of an example from the practice problems.

(¢) The function f defined by f(z) = [, |t| dt works by the Second Fundamental Theorem of

Calculus. ]

2. Suppose that f : (a,b) — R is continuous and bounded with supremum M. Show that for any
€ > 0 there exists a rational ¢ € (a,b) such that M —e < f(c).

Most of you noted that by one possible characterization of supremums, there exists = € (a,b)
such that M — e < f(x), but now the point is in guaranteeing that you can actually choose z to
be rational. If M was actually a maximum, so that M = f(p) for some p € (a,b), you can use a
sequence of rationals converging to p to get what you need. However, since here f is only continuous
on an open interval, it is not necessarily true that the supremum M is actually a maximum, so
we have to do something different. The denseness of Q in R is important, as is the fact that f is
continuous since the claim is no longer true if we drop that condition.

Proof. Let e > 0. Since nothing smaller than M can be an upper bound of f, there exists z € (a, b)
such that .

Take a sequence (ry,) of rationals in (a,b) converging to x. Since f is continuous, f(r,) converges
to f(x) so there exists N such that

€
Frw) ~ @) < &
Then . . .
flrn) > f2) = 5 > (M—§)—§=M—€,
so ry € (a,b) is the rational number we want. O

3. Define the sequence (z,) by
sinl sin2 sin3 sinn
=gt T Tt

Show that (z,) is Cauchy. Hint: For any n > 1, m <i_ n%rl

for n > 1.




Proof. Let € > 0 and choose N € N such that % <e. Let m>n>N and write masm=n+k
for some k£ > 0. Then:

T — Tn| = |Tnsk — Ta
_|sin(n+1) sin(n+2) N sin(n + k)
(n+1)2 (n+2)? (n+ k)2
sin(n + 1) sin(n+2)| | [sin(n + k)
(n+1)2 (n+2)% | (n+ k)2
o1 Lo,
“(n+1)2  (n+2)? (n+ k)2
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since all other terms cancel out: the _%4-1 in the first set of parentheses cancels with the %H in
the second set, and so on. In the second line we use the fact that the expression for x,,,; consists
of the sum making up x, plus the additional terms showing up in the second line. Hence we get:

1 <1<1<
< <e
n+k n_ N ’

‘xm - xn| S -
n
showing that (z,) is Cauchy as required. O

4. Define f: R — R by

0 xz=0.
Show that f is continuously differentiable at 0 but not twice differentiable at 0.

4ooe 1
{$ coszz T #0

Proof. We first have:

lim 7]6(36) — f(0) = lim 7f(:c) — lim 2> cos i =0.
z—0 z—0 z—0 X z—0 22
Thus f is differentiable at 0 and f’(0) = 0. Now, f is differentiable at 2 # 0 by the product and

chain rules since f agrees with the function z* cos x—IQ everywhere close enough to any = # 0. Using

the product and chain rules we get:
() = 4x?’cosm% +2xsin% T # O'
0 z=0
Since ) )
. / 1 2 - T — — !/
lim f'(z) = ;13% <4x cos — + 2z sin $2> 0= f(0).

z—0

f! is continuous at 0, so f is continuously differentiable at 0.
Finally, we have that

o £ = 710
-0

z—0 T

! 1 1
= lim f'(x) = lim (4x cos — + 2sin 2)
x x

z—0 X z—0

does not exist due to the sin ?12 term, so f’ is not differentiable at 0, meaning that f is not twice

differentiable at 0. t



5. Define f : [-5,5] = R by

Show that f is integrable on [—5, 5].

Proof. Set M = €25 + 5 and note that |f(x)] < M for all x € [-5,5]. Let € > 0. On the interval
[—5, 1a37)» f agrees with the function exz, so it is continuous and hence integrable on this interval.
Thus there exists a partition P; of this interval such that

U(f, P1) = L(f, 1) <

Wl

2

On the interval [1537, 5], f agrees with the function —5 cos 2%, so it is continuous and hence integrable

on this interval as well. Thus there exists a partition P» of this interval such that

€
U(f, P2) = L(f, P2) < 3.

Let P be the partition of [—5,5] consisting of P; and P». The subintervals determined by P
include all the ones determined by P, and P, as well as the interval [~ 1577, 1537)- The contributions
from the subintervals making up P; to U(f, P) — L(f, P) are less than £, as are the contributions

3
from the subinterval making up P». On [—1537, 1o37] We have

€ €

6M 3
since | f(z) — f(y)| < |f(x)| +|f(y)| < 2M for all z,y € [-5,5]. Thus we get:

(sup f — inf f)(length) < 2M

UULP) - LU P) < §+5+5 =

showing that f is integrable on [—5, 5] as claimed. O

6. Suppose that f:[—5,5] — R is the function from the previous problem:

2

er —5<x<0
f(x) =140 z=0
—5cosa? 0<az <5,

and define the function F : [0,2] — R by

x?
F(z) = / f(t)dt.
0
Show that |F'(z) — F(y)| < 20|z — y| for all z,y € [0, 2], and hence that F is uniformly continuous.

Many of you used the Mean Value Theorem here, which works as long as you justify why the
Mean Value Theorem is actually applicable! In particular, the integrand f is not continuous on
all of [0,22], so why is F differentiable? Why is F' even continuous on [0, 2]? This wasn’t a major
issue, but was something you had to say something about.



Note that if F' was defined using ff; f(t) dt instead, then the Mean Value Theorem is definitely
not applicable since now the point at which f is not continuous is in the middle of the region of
integration. In this case you have to use an argument like the one I give below. This was actually
how I originally envisioned the problem, but some final fiddling with the integral which ended up
being used made it so that the Mean Value Theorem was applicable.

Proof. For any z,y € [0, 2] with = > y, we have

2
y2

F@—ﬂwjff@ﬁjffwﬁz/fwﬁ

Since 0 < 32 < 22, the function f on the interval [y?, 22] is given by f(t) = —5cost?, so we get:

1.2
/ —5cost?dt
y2

Since 0 < z,y < 2, |z +y| < 4, so

2

x z?
|F(x) — F(y)| = §/2 ‘—5cost2| dt§/2 5dt = 5|z — .
y Y

|F(z) — F(y)| < 5lz® — y*| = 5z + y||z — y| < 20|z —y]

as claimed. To see that F' is uniformly continuous, for € > 0 let 6 = g5. Then if |z — y| < § with
z,y € [0,2], we have
[F(x) = Fy)| <20[z —y[ <20 =¢

as required. O

7. Suppose that f:[1,2] — R is continuous and that for any ¢ € (1, 2),

c 2
3/1 e f(x)dx—/c e’ f(x)dr = 0.
Show that f(z) =0 for all z € [1,2].

This is a simplified version of the last problem on the practice final. One thing to note is that
taking derivatives with respect to ¢ will in the end only show that f(z) =0 for x € (1,2), and you
then have to use continuity of f to get that f(1) =0 = f(2) as well.

Proof. For c € (1,2), the function

Flc) = 3/lcexf(x) dm+/:exf(m) dz

is differentiable with respect to ¢ by the Second Fundamental Theorem of Calculus. The given
condition says that F'(¢) =0 for all ¢ € (1,2), so differentiating with respect to ¢ gives:

0=F'(c) =3ef(c) + e f(c) = 4e°f(c).
Since 4e€ # 0, we must have f(c¢) = 0 for all ¢ € (1,2). Since f is continuous,

£(1) = lim f(z) = 0 and f(2) = lim f(x) =0

z—1

as well, so f(x) =0 for all x € [1,2]. O



