Math 320-1: Final Exam Solutions
 Northwestern University, Fall 2014

1. Give an example of each of the following. You do not have to justify your answer.
(a) A monotone subsequence of the sequence $x_{n}=\cos \frac{n \pi}{2}$.
(b) A function f on \mathbb{R} which is differentiable only at 0 .
(c) A nonnegative, nonconstant integrable function f on $[0,1]$ such that $\int_{0}^{1} f(x) d x=0$.
(d) A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f^{\prime} is not integrable on $[1,3]$
(e) A differentiable function f on $(-1,1)$ such that $f^{\prime}(x)=|x|$ for all $x \in(-1,1)$.

Solution. (a) The subsequence $\left(x_{4 n}\right)$ of terms indexed by a multiple of 4 is constant, so monotone.
(b) The function defined by $f(x)=x^{2}$ for $x \in \mathbb{Q}$ and $f(x)=-x^{2}$ for $x \notin \mathbb{Q}$ works. Note that the function defined similarly but using x and $-x$ instead of x^{2} and $-x^{2}$ does not work since this function is not differentiable at $0: \lim _{x \rightarrow 0}(f(x)-f(0)) /(x-0)$ does not exist in this case.
(c) The function which is 0 everywhere except at $\frac{1}{2}$ where $f\left(\frac{1}{2}\right)=1$ works, as does my favorite function.
(d) The function defined by $f(x)=(x-2)^{2} \sin \frac{1}{(x-2)^{2}}$ for $x \neq 2$ and $f(2)=0$ works, which is just a modification of an example from the practice problems.
(e) The function f defined by $f(x)=\int_{-1}^{x}|t| d t$ works by the Second Fundamental Theorem of Calculus.
2. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and bounded with supremum M. Show that for any $\epsilon>0$ there exists a rational $c \in(a, b)$ such that $M-\epsilon<f(c)$.

Most of you noted that by one possible characterization of supremums, there exists $x \in(a, b)$ such that $M-\epsilon<f(x)$, but now the point is in guaranteeing that you can actually choose x to be rational. If M was actually a maximum, so that $M=f(p)$ for some $p \in(a, b)$, you can use a sequence of rationals converging to p to get what you need. However, since here f is only continuous on an open interval, it is not necessarily true that the supremum M is actually a maximum, so we have to do something different. The denseness of \mathbb{Q} in \mathbb{R} is important, as is the fact that f is continuous since the claim is no longer true if we drop that condition.

Proof. Let $\epsilon>0$. Since nothing smaller than M can be an upper bound of f, there exists $x \in(a, b)$ such that

$$
M-\frac{\epsilon}{2}<f(x)
$$

Take a sequence $\left(r_{n}\right)$ of rationals in (a, b) converging to x. Since f is continuous, $f\left(r_{n}\right)$ converges to $f(x)$ so there exists N such that

$$
\left|f\left(r_{N}\right)-f(x)\right|<\frac{\epsilon}{2}
$$

Then

$$
f\left(r_{N}\right)>f(x)-\frac{\epsilon}{2}>\left(M-\frac{\epsilon}{2}\right)-\frac{\epsilon}{2}=M-\epsilon
$$

so $r_{N} \in(a, b)$ is the rational number we want.
3. Define the sequence $\left(x_{n}\right)$ by

$$
x_{n}=\frac{\sin 1}{1^{2}}+\frac{\sin 2}{2^{2}}+\frac{\sin 3}{3^{2}}+\cdots+\frac{\sin n}{n^{2}} \text { for } n \geq 1
$$

Show that $\left(x_{n}\right)$ is Cauchy. Hint: For any $n \geq 1, \frac{1}{(n+1)^{2}} \leq \frac{1}{n}-\frac{1}{n+1}$.

Proof. Let $\epsilon>0$ and choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Let $m \geq n \geq N$ and write m as $m=n+k$ for some $k \geq 0$. Then:

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & =\left|x_{n+k}-x_{n}\right| \\
& =\left|\frac{\sin (n+1)}{(n+1)^{2}}+\frac{\sin (n+2)}{(n+2)^{2}} \cdots+\frac{\sin (n+k)}{(n+k)^{2}}\right| \\
& \leq\left|\frac{\sin (n+1)}{(n+1)^{2}}\right|+\left|\frac{\sin (n+2)}{(n+2)^{2}}\right| \cdots+\left|\frac{\sin (n+k)}{(n+k)^{2}}\right| \\
& \leq \frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}} \cdots+\frac{1}{(n+k)^{2}} \\
& \leq\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\cdots+\left(\frac{1}{n+k-1}-\frac{1}{n+k}\right) \\
& =\frac{1}{n}-\frac{1}{n+k}
\end{aligned}
$$

since all other terms cancel out: the $-\frac{1}{n+1}$ in the first set of parentheses cancels with the $\frac{1}{n+1}$ in the second set, and so on. In the second line we use the fact that the expression for x_{n+k} consists of the sum making up x_{n} plus the additional terms showing up in the second line. Hence we get:

$$
\left|x_{m}-x_{n}\right| \leq \frac{1}{n}-\frac{1}{n+k} \leq \frac{1}{n} \leq \frac{1}{N}<\epsilon
$$

showing that $\left(x_{n}\right)$ is Cauchy as required.
4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{4} \cos \frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that f is continuously differentiable at 0 but not twice differentiable at 0 .
Proof. We first have:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} x^{3} \cos \frac{1}{x^{2}}=0 .
$$

Thus f is differentiable at 0 and $f^{\prime}(0)=0$. Now, f is differentiable at $x \neq 0$ by the product and chain rules since f agrees with the function $x^{4} \cos \frac{1}{x^{2}}$ everywhere close enough to any $x \neq 0$. Using the product and chain rules we get:

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
4 x^{3} \cos \frac{1}{x^{2}}+2 x \sin \frac{1}{x^{2}} & x \neq 0 \\
0 & x=0
\end{array} .\right.
$$

Since

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left(4 x^{2} \cos \frac{1}{x^{2}}+2 x \sin \frac{1}{x^{2}}\right)=0=f^{\prime}(0) .
$$

f^{\prime} is continuous at 0 , so f is continuously differentiable at 0 .
Finally, we have that

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{x}=\lim _{x \rightarrow 0}\left(4 x \cos \frac{1}{x^{2}}+2 \sin \frac{1}{x^{2}}\right)
$$

does not exist due to the $\sin \frac{1}{x^{2}}$ term, so f^{\prime} is not differentiable at 0 , meaning that f is not twice differentiable at 0 .
5. Define $f:[-5,5] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{x^{2}} & -5 \leq x<0 \\ 0 & x=0 \\ -5 \cos x^{2} & 0<x \leq 5\end{cases}
$$

Show that f is integrable on $[-5,5]$.
Proof. Set $M=e^{25}+5$ and note that $|f(x)| \leq M$ for all $x \in[-5,5]$. Let $\epsilon>0$. On the interval $\left[-5, \frac{\epsilon}{12 M}\right], f$ agrees with the function $e^{x^{2}}$, so it is continuous and hence integrable on this interval. Thus there exists a partition P_{1} of this interval such that

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\epsilon}{3} .
$$

On the interval $\left[\frac{\epsilon}{12 M}, 5\right], f$ agrees with the function $-5 \cos x^{2}$, so it is continuous and hence integrable on this interval as well. Thus there exists a partition P_{2} of this interval such that

$$
U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\frac{\epsilon}{3} .
$$

Let P be the partition of $[-5,5]$ consisting of P_{1} and P_{2}. The subintervals determined by P include all the ones determined by P_{1} and P_{2} as well as the interval $\left[-\frac{\epsilon}{12 M}, \frac{\epsilon}{12 M}\right]$. The contributions from the subintervals making up P_{1} to $U(f, P)-L(f, P)$ are less than $\frac{\epsilon}{3}$, as are the contributions from the subinterval making up P_{2}. On $\left[-\frac{\epsilon}{12 M}, \frac{\epsilon}{12 M}\right]$ we have

$$
(\sup f-\inf f)(\text { length }) \leq 2 M \frac{\epsilon}{6 M}=\frac{\epsilon}{3}
$$

since $|f(x)-f(y)| \leq|f(x)|+|f(y)| \leq 2 M$ for all $x, y \in[-5,5]$. Thus we get:

$$
U(f, P)-L(f, P)<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon,
$$

showing that f is integrable on $[-5,5]$ as claimed.
6. Suppose that $f:[-5,5] \rightarrow \mathbb{R}$ is the function from the previous problem:

$$
f(x)= \begin{cases}e^{x^{2}} & -5 \leq x<0 \\ 0 & x=0 \\ -5 \cos x^{2} & 0<x \leq 5\end{cases}
$$

and define the function $F:[0,2] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{0}^{x^{2}} f(t) d t
$$

Show that $|F(x)-F(y)| \leq 20|x-y|$ for all $x, y \in[0,2]$, and hence that F is uniformly continuous.
Many of you used the Mean Value Theorem here, which works as long as you justify why the Mean Value Theorem is actually applicable! In particular, the integrand f is not continuous on all of $\left[0, x^{2}\right]$, so why is F differentiable? Why is F even continuous on $[0,2]$? This wasn't a major issue, but was something you had to say something about.

Note that if F was defined using $\int_{-2}^{x^{2}} f(t) d t$ instead, then the Mean Value Theorem is definitely not applicable since now the point at which f is not continuous is in the middle of the region of integration. In this case you have to use an argument like the one I give below. This was actually how I originally envisioned the problem, but some final fiddling with the integral which ended up being used made it so that the Mean Value Theorem was applicable.

Proof. For any $x, y \in[0,2]$ with $x \geq y$, we have

$$
F(x)-F(y)=\int_{0}^{x^{2}} f(t) d t-\int_{0}^{y^{2}} f(t) d t=\int_{y^{2}}^{x^{2}} f(t) d t
$$

Since $0 \leq y^{2} \leq x^{2}$, the function f on the interval $\left[y^{2}, x^{2}\right]$ is given by $f(t)=-5 \cos t^{2}$, so we get:

$$
|F(x)-F(y)|=\left|\int_{y^{2}}^{x^{2}}-5 \cos t^{2} d t\right| \leq \int_{y^{2}}^{x^{2}}\left|-5 \cos t^{2}\right| d t \leq \int_{y^{2}}^{x^{2}} 5 d t=5\left|x^{2}-y^{2}\right|
$$

Since $0 \leq x, y \leq 2,|x+y| \leq 4$, so

$$
|F(x)-F(y)| \leq 5\left|x^{2}-y^{2}\right|=5|x+y||x-y| \leq 20|x-y|
$$

as claimed. To see that F is uniformly continuous, for $\epsilon>0$ let $\delta=\frac{\epsilon}{20}$. Then if $|x-y|<\delta$ with $x, y \in[0,2]$, we have

$$
|F(x)-F(y)| \leq 20|x-y|<2 \delta=\epsilon
$$

as required.
7. Suppose that $f:[1,2] \rightarrow \mathbb{R}$ is continuous and that for any $c \in(1,2)$,

$$
3 \int_{1}^{c} e^{x} f(x) d x-\int_{c}^{2} e^{x} f(x) d x=0
$$

Show that $f(x)=0$ for all $x \in[1,2]$.
This is a simplified version of the last problem on the practice final. One thing to note is that taking derivatives with respect to c will in the end only show that $f(x)=0$ for $x \in(1,2)$, and you then have to use continuity of f to get that $f(1)=0=f(2)$ as well.

Proof. For $c \in(1,2)$, the function

$$
F(c)=3 \int_{1}^{c} e^{x} f(x) d x+\int_{2}^{c} e^{x} f(x) d x
$$

is differentiable with respect to c by the Second Fundamental Theorem of Calculus. The given condition says that $F(c)=0$ for all $c \in(1,2)$, so differentiating with respect to c gives:

$$
0=F^{\prime}(c)=3 e^{c} f(c)+e^{c} f(c)=4 e^{c} f(c)
$$

Since $4 e^{c} \neq 0$, we must have $f(c)=0$ for all $c \in(1,2)$. Since f is continuous,

$$
f(1)=\lim _{x \rightarrow 1} f(x)=0 \text { and } f(2)=\lim _{x \rightarrow 1} f(x)=0
$$

as well, so $f(x)=0$ for all $x \in[1,2]$.

