
Math 320-1: Final Exam Solutions
Northwestern University, Fall 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A nonempty bounded set S ∈ R such that (supS)2 ∕= supS2, where S2 = {x2 | x ∈ S}.
(b) A uniformly continuous differentiable function on (0,∞) with unbounded derivative.
(c) A non-integrable function f on [2, 3] such that f(2) = f(3) = 10.
(d) A positive integrable function f on [1, 2] such that 1

f is not integrable on [1, 2]

(e) A differentiable function f : (1, 2) → R such that f ′(x) = sin(x2) for all x ∈ (1, 2).

Solution. (a) The interval S = (−10, 3) works. We have S2 = [0, 100), which has supremum 100
and not (supS)2 = 9.

(b) The function f(x) =
√
x works. This is uniformly continuous since for any  > 0, δ = 2

satisfies the required definition if we use the fact that |
√
x−√

y| ≤


|x− y|, and its derivative is
f ′(x) = 1

2
√
x
, which is unbounded near 0.

(c) The function which is 10 at each rational and 0 at each irrational works. This is not
integrable since all lower sums equal 0 and all upper sums equal 10(3− 2) = 10.

(d) The function defined by f(x) = x − 1 for x ∕= 1 and f(1) = 2 works. This is integrable
since it is continuous except at a single point, but its reciprocal— 1

x−1 for x ∕= 1 and 1
2 at 1—is

unbounded on [1, 2] and so is not integrable.
(e) The function F (x) =

 x
1 sin(t2) dt works by the Fundamental Theorem of Calculus.

2. Suppose that S is a nonempty bounded subset of R. Show that there exists a sequence (xn)
with each xn ∈ S which converges to inf S. Hint: For any  > 0, inf S +  is not a lower bound of
S.

Proof. For each n ∈ N, inf S + 1
n is not a lower bound of S, so there exists xn ∈ S such that

xn < inf S +
1

n
.

Since inf S ≤ xn (inf S is a lower bound of S), this gives

|xn − inf S| < 1

n
.

Thus for any  > 0, we can pick N ∈ N such that 1
N < , and get:

|xn − inf S| < 1

n
≤ 1

N
<  for any n ≥ N.

Hence the sequence (xn) of elements of S thus constructed converges to inf S.

3. Define the sequence (xn) by

xn =
2

13
+

2

23
+

2

33
+ · · ·+ 2

n3

Show that (xn) converges. You can use the fact from a previous homework assignment that the
sequence yn = 1

12
+ 1

22
+ · · ·+ 1

n2 converges.



Proof. We will show that this sequence is Cauchy. Let  > 0. Since (yn) converges, it is Cauchy so
there exists N ∈ N such that

|yn+k − yn| <


2
for any k ≥ 0 and n ≥ N.

The difference yn+k − yn equals:

yn+k − yn =
1

(n+ k)2
+ · · ·+ 1

(n+ 2)2
+

1

(n+ 1)2

and the difference xn+k − xn equals:

xn+k − xn =
2

(n+ k)3
+ · · ·+ 2

(n+ 2)3
+

2

(n+ 1)3
.

Since 1
m3 ≤ 1

m2 for any m ≥ N, we thus get that for any n ≥ N and k ≥ 0, we have:

|xn+k − xn| =
2

(n+ k)3
+ · · ·+ 2

(n+ 2)3
+

2

(n+ 1)3

≤ 2

(n+ k)2
+ · · ·+ 2

(n+ 2)2
+

2

(n+ 1)2

= 2|yn+k − yn|

< 2


2
= .

Thus (xn) is Cauchy, so it converges.

4. Suppose that f : R → R is continuously differentiable. Show that for any x, y ∈ R with x ∕= y,
there exists a rational c between x and y such that


f(x)− f(y)

x− y
− f ′(c)

 <
1

1000
.

Hint: Use the Mean Value Theorem to rewrite f(x)−f(y)
x−y .

Proof. By the Mean Value Theorem, for any x, ∕= y there exists d between x and y such that:

f(x)− f(y)

x− y
= f ′(d).

Since f ′ is continuous at d, there exists δ > 0 such that

|f ′(d)− f ′(x)| < 1

1000
whenever |d− x| < δ.

Thus for a rational number c in (d− δ, d+ δ)—which exists by the denseness of Q in R—we have:

|f ′(d)− f ′(c)| < 1

1000
, which is equivalent to


f(x)− f(y)

x− y
− f ′(c)

 <
1

1000

as desired.
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5. Show that the function f : [0, 1] → R defined by

f(x) =


1− 1

n x = 1
n for some n ∈ N

1 otherwise

is integrable on [0, 1] and determine the value of
 1
0 f(x) dx.

Proof. Let  > 0. There are only finitely many numbers of the form 1
n where n ∈ N which are

larger than 
2—call the n’s which give these finite number n1, . . . , nk, so that there are k in total.

Take an interval Ij around each 1
nj

whose length is smaller than:

length(Ij) <


2k

and furthermore if necessary shrink each Ij so that they do not intersect and lie completely within
[0, 1]. Take P to be the partition of [0, 1] defined by 0, 1, and the endpoints of all the Ij .

We break up the computation of U(f, P )−L(f, P ) into three types of subintervals: those taken
over the subintervals Ij ; those taken over [0, 

2 ]; and those taken over the remaining subintervals.
Over the third type, sup f and inf f are both 1 since f is constant on these, so these contribute
nothing to the difference U(f, P )− L(f, P ). Over the second type [0, 

2 ], we have:

(sup f − inf f)(length) ≤ 1(length) =


2
.

And finally over the first type, we have:



Ij

(sup f − inf f)(length) ≤


Ij

1(length) <

k

j=1



2k
=



2
.

Thus after adding up all three contributions, we get:

U(f, P )− L(f, P ) <


2
+



2
+ 0 = ,

which shows that f is integrable on [0, 1].
The value of all upper sums is 1(1− 0) = 1 since the supremum of f over any subinterval is 1,

so the infimum of all upper sums, and hence the value of
 1
0 f(x) dx, is 1.

6. Suppose f : [0, 5] → R is continuous and define g : [0, 5] → R by

g(x) =






f(x) x ∕= 2, 5

10 x = 2

−4 x = 5.

Show that g is integrable on [0, 5]. You cannot simply quote the practice problem which says that
changing the value of an integrable function at a finite number of points still results in an integrable
function—the point here is to prove this in the special case where we change the value at 2 points.

Proof. Since f is continuous, it is bounded, and since g differs from f at possibly only two points,
it too is bounded. Let M be a bound on g, so that |g(x)| ≤ M for all x ∈ [0, 5], which then implies
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that |g(x) − g(y)| ≤ 2M for all x, y ∈ [0, 5]. This in turn implies that sup g − inf g ≤ 2M on any
subinterval within [0, 5].

Pick an interval I = [2− δ1, 2 + δ1] around 2 of length smaller than

length(I) <


8M

and an interval J = [5− δ2, 5] containing 5 of length smaller than

length(J) <


8M
.

Furthermore, if necessary shrink I and J so that they lie within [0, 5] and do not intersect. Since g
is continuous on [0, 2− δ1] and [2+ δ1, 5− δ]—because it equals f on each of these—g is integrable
on these so there exist partitions P1, P2 of these two intervals respectively such that

U(g, P1)− L(g, P1) <


4
and U(g, P2)− L(g, P2) <



4
.

Let P be the partition of [0, 5] consisting of 0, 5, all the points making up P1, and all the points
making up P2. Then the subintervals determined by P come in four types: those determined by P1,
[2− δ1, 2+ δ1], those determined by P2, and [5− δ1, 5]. The value of U(g, P )−L(g, P ) then consists
of four contributions. The first type contributes U(g, P1)− L(g, P1) <


4 ; the second contributes:

(sup g − inf g)(length) ≤ 2M


8M
=



4
;

the third contributes U(g, P2)− L(g, P2) <

4 ; and the fourth contributes:

(sup g − inf g)(length) ≤ 2M


8M
=



4
.

Thus altogether we get:

U(g, P )− L(g, P ) <


4
+



4
+



4
+



4
= ,

so g is integrable over [0, 5].

7. Define f : [−2, 2] → R by

f(t) =


cos 1

t t ∕= 0

1 t = 0

and F : [−2, 2] → R by

F (x) =

 x4ex

−2
tf(t) dt for all x ∈ [−2, 2].

Show that F ′(0) exists. Careful: f is not continuous at 0

Proof. We have:

F (x)− F (0)

x− 0
=

1

x

 x4ex

−2
tf(t) dt−

 0

−2
tf(t) dt


=

1

x

 x4ex

0
tf(t) dt.

In absolute value, we can found this by:

1

|x|



 x4ex

0
tf(t) dt

 ≤
1

|x|

 x4ex

0
|tf(t)| dt ≤ 1

|x|

 x4ex

0
2 dt = 2|x3|ex,
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where we use the fact that |tf(t)| ≤ 2(1) = 2 for t ∈ [−2, 2]. Since this final expression goes to 0 as
x → 0, the squeeze theorem implies that the initial expression on the left does too, and so

lim
x→0

F (x)− F (0)

x− 0
= 0

as well. Hence F ′(0) exists and equals 0.
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