Math 320-1: Final Exam Solutions Northwestern University, Fall 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A nonempty bounded set $S \in \mathbb{R}$ such that $(\sup S)^{2} \neq \sup S^{2}$, where $S^{2}=\left\{x^{2} \mid x \in S\right\}$.
(b) A uniformly continuous differentiable function on $(0, \infty)$ with unbounded derivative.
(c) A non-integrable function f on $[2,3]$ such that $f(2)=f(3)=10$.
(d) A positive integrable function f on $[1,2]$ such that $\frac{1}{f}$ is not integrable on $[1,2]$
(e) A differentiable function $f:(1,2) \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=\sin \left(x^{2}\right)$ for all $x \in(1,2)$.

Solution. (a) The interval $S=(-10,3)$ works. We have $S^{2}=[0,100)$, which has supremum 100 and not $(\sup S)^{2}=9$.
(b) The function $f(x)=\sqrt{x}$ works. This is uniformly continuous since for any $\epsilon>0, \delta=\epsilon^{2}$ satisfies the required definition if we use the fact that $|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|}$, and its derivative is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, which is unbounded near 0 .
(c) The function which is 10 at each rational and 0 at each irrational works. This is not integrable since all lower sums equal 0 and all upper sums equal $10(3-2)=10$.
(d) The function defined by $f(x)=x-1$ for $x \neq 1$ and $f(1)=2$ works. This is integrable since it is continuous except at a single point, but its reciprocal $-\frac{1}{x-1}$ for $x \neq 1$ and $\frac{1}{2}$ at 1 -is unbounded on $[1,2]$ and so is not integrable.
(e) The function $F(x)=\int_{1}^{x} \sin \left(t^{2}\right) d t$ works by the Fundamental Theorem of Calculus.
2. Suppose that S is a nonempty bounded subset of \mathbb{R}. Show that there exists a sequence $\left(x_{n}\right)$ with each $x_{n} \in S$ which converges to $\inf S$. Hint: For any $\epsilon>0, \inf S+\epsilon$ is not a lower bound of S.

Proof. For each $n \in \mathbb{N}$, $\inf S+\frac{1}{n}$ is not a lower bound of S, so there exists $x_{n} \in S$ such that

$$
x_{n}<\inf S+\frac{1}{n} .
$$

Since $\inf S \leq x_{n}(\inf S$ is a lower bound of $S)$, this gives

$$
\left|x_{n}-\inf S\right|<\frac{1}{n}
$$

Thus for any $\epsilon>0$, we can pick $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$, and get:

$$
\left|x_{n}-\inf S\right|<\frac{1}{n} \leq \frac{1}{N}<\epsilon \text { for any } n \geq N
$$

Hence the sequence $\left(x_{n}\right)$ of elements of S thus constructed converges to inf S.
3. Define the sequence $\left(x_{n}\right)$ by

$$
x_{n}=\frac{2}{1^{3}}+\frac{2}{2^{3}}+\frac{2}{3^{3}}+\cdots+\frac{2}{n^{3}}
$$

Show that $\left(x_{n}\right)$ converges. You can use the fact from a previous homework assignment that the sequence $y_{n}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}$ converges.

Proof. We will show that this sequence is Cauchy. Let $\epsilon>0$. Since $\left(y_{n}\right)$ converges, it is Cauchy so there exists $N \in \mathbb{N}$ such that

$$
\left|y_{n+k}-y_{n}\right|<\frac{\epsilon}{2} \text { for any } k \geq 0 \text { and } n \geq N .
$$

The difference $y_{n+k}-y_{n}$ equals:

$$
y_{n+k}-y_{n}=\frac{1}{(n+k)^{2}}+\cdots+\frac{1}{(n+2)^{2}}+\frac{1}{(n+1)^{2}}
$$

and the difference $x_{n+k}-x_{n}$ equals:

$$
x_{n+k}-x_{n}=\frac{2}{(n+k)^{3}}+\cdots+\frac{2}{(n+2)^{3}}+\frac{2}{(n+1)^{3}} .
$$

Since $\frac{1}{m^{3}} \leq \frac{1}{m^{2}}$ for any $m \geq \mathbb{N}$, we thus get that for any $n \geq N$ and $k \geq 0$, we have:

$$
\begin{aligned}
\left|x_{n+k}-x_{n}\right| & =\frac{2}{(n+k)^{3}}+\cdots+\frac{2}{(n+2)^{3}}+\frac{2}{(n+1)^{3}} \\
& \leq \frac{2}{(n+k)^{2}}+\cdots+\frac{2}{(n+2)^{2}}+\frac{2}{(n+1)^{2}} \\
& =2\left|y_{n+k}-y_{n}\right| \\
& <2 \frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus $\left(x_{n}\right)$ is Cauchy, so it converges.
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable. Show that for any $x, y \in \mathbb{R}$ with $x \neq y$, there exists a rational c between x and y such that

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(c)\right|<\frac{1}{1000}
$$

Hint: Use the Mean Value Theorem to rewrite $\frac{f(x)-f(y)}{x-y}$.
Proof. By the Mean Value Theorem, for any $x, \neq y$ there exists d between x and y such that:

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(d) .
$$

Since f^{\prime} is continuous at d, there exists $\delta>0$ such that

$$
\left|f^{\prime}(d)-f^{\prime}(x)\right|<\frac{1}{1000} \text { whenever }|d-x|<\delta
$$

Thus for a rational number c in $(d-\delta, d+\delta)$-which exists by the denseness of \mathbb{Q} in \mathbb{R}-we have:

$$
\left|f^{\prime}(d)-f^{\prime}(c)\right|<\frac{1}{1000}, \text { which is equivalent to }\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(c)\right|<\frac{1}{1000}
$$

as desired.
5. Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1-\frac{1}{n} & x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

is integrable on $[0,1]$ and determine the value of $\int_{0}^{1} f(x) d x$.
Proof. Let $\epsilon>0$. There are only finitely many numbers of the form $\frac{1}{n}$ where $n \in \mathbb{N}$ which are larger than $\frac{\epsilon}{2}$-call the n 's which give these finite number n_{1}, \ldots, n_{k}, so that there are k in total. Take an interval I_{j} around each $\frac{1}{n_{j}}$ whose length is smaller than:

$$
\operatorname{length}\left(I_{j}\right)<\frac{\epsilon}{2 k}
$$

and furthermore if necessary shrink each I_{j} so that they do not intersect and lie completely within $[0,1]$. Take P to be the partition of $[0,1]$ defined by 0,1 , and the endpoints of all the I_{j}.

We break up the computation of $U(f, P)-L(f, P)$ into three types of subintervals: those taken over the subintervals I_{j}; those taken over $\left[0, \frac{\epsilon}{2}\right]$; and those taken over the remaining subintervals. Over the third type, $\sup f$ and $\inf f$ are both 1 since f is constant on these, so these contribute nothing to the difference $U(f, P)-L(f, P)$. Over the second type $\left[0, \frac{\epsilon}{2}\right]$, we have:

$$
(\sup f-\inf f)(\text { length }) \leq 1(\text { length })=\frac{\epsilon}{2} .
$$

And finally over the first type, we have:

$$
\sum_{I_{j}}(\sup f-\inf f)(\text { length }) \leq \sum_{I_{j}} 1(\text { length })<\sum_{j=1}^{k} \frac{\epsilon}{2 k}=\frac{\epsilon}{2} .
$$

Thus after adding up all three contributions, we get:

$$
U(f, P)-L(f, P)<\frac{\epsilon}{2}+\frac{\epsilon}{2}+0=\epsilon
$$

which shows that f is integrable on $[0,1]$.
The value of all upper sums is $1(1-0)=1$ since the supremum of f over any subinterval is 1 , so the infimum of all upper sums, and hence the value of $\int_{0}^{1} f(x) d x$, is 1 .
6. Suppose $f:[0,5] \rightarrow \mathbb{R}$ is continuous and define $g:[0,5] \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}f(x) & x \neq 2,5 \\ 10 & x=2 \\ -4 & x=5\end{cases}
$$

Show that g is integrable on $[0,5]$. You cannot simply quote the practice problem which says that changing the value of an integrable function at a finite number of points still results in an integrable function - the point here is to prove this in the special case where we change the value at 2 points.

Proof. Since f is continuous, it is bounded, and since g differs from f at possibly only two points, it too is bounded. Let M be a bound on g, so that $|g(x)| \leq M$ for all $x \in[0,5]$, which then implies
that $|g(x)-g(y)| \leq 2 M$ for all $x, y \in[0,5]$. This in turn implies that $\sup g-\inf g \leq 2 M$ on any subinterval within [0,5].

Pick an interval $I=\left[2-\delta_{1}, 2+\delta_{1}\right]$ around 2 of length smaller than

$$
\text { length }(I)<\frac{\epsilon}{8 M}
$$

and an interval $J=\left[5-\delta_{2}, 5\right]$ containing 5 of length smaller than

$$
\text { length }(J)<\frac{\epsilon}{8 M}
$$

Furthermore, if necessary shrink I and J so that they lie within $[0,5]$ and do not intersect. Since g is continuous on $\left[0,2-\delta_{1}\right]$ and $\left[2+\delta_{1}, 5-\delta\right]$-because it equals f on each of these - g is integrable on these so there exist partitions P_{1}, P_{2} of these two intervals respectively such that

$$
U\left(g, P_{1}\right)-L\left(g, P_{1}\right)<\frac{\epsilon}{4} \quad \text { and } \quad U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\frac{\epsilon}{4} .
$$

Let P be the partition of $[0,5]$ consisting of 0,5 , all the points making up P_{1}, and all the points making up P_{2}. Then the subintervals determined by P come in four types: those determined by P_{1}, [$2-\delta_{1}, 2+\delta_{1}$], those determined by P_{2}, and [5- $\left.\delta_{1}, 5\right]$. The value of $U(g, P)-L(g, P)$ then consists of four contributions. The first type contributes $U\left(g, P_{1}\right)-L\left(g, P_{1}\right)<\frac{\epsilon}{4}$; the second contributes:

$$
(\sup g-\inf g)(\text { length }) \leq 2 M \frac{\epsilon}{8 M}=\frac{\epsilon}{4}
$$

the third contributes $U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\frac{\epsilon}{4}$; and the fourth contributes:

$$
(\sup g-\inf g)(\text { length }) \leq 2 M \frac{\epsilon}{8 M}=\frac{\epsilon}{4}
$$

Thus altogether we get:

$$
U(g, P)-L(g, P)<\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}=\epsilon
$$

so g is integrable over $[0,5]$.
7. Define $f:[-2,2] \rightarrow \mathbb{R}$ by

$$
f(t)= \begin{cases}\cos \frac{1}{t} & t \neq 0 \\ 1 & t=0\end{cases}
$$

and $F:[-2,2] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{-2}^{x^{4} e^{x}} t f(t) d t \text { for all } x \in[-2,2] .
$$

Show that $F^{\prime}(0)$ exists. Careful: f is not continuous at 0
Proof. We have:

$$
\frac{F(x)-F(0)}{x-0}=\frac{1}{x}\left(\int_{-2}^{x^{4} e^{x}} t f(t) d t-\int_{-2}^{0} t f(t) d t\right)=\frac{1}{x} \int_{0}^{x^{4} e^{x}} t f(t) d t
$$

In absolute value, we can found this by:

$$
\frac{1}{|x|}\left|\int_{0}^{x^{4} e^{x}} t f(t) d t\right| \leq \frac{1}{|x|} \int_{0}^{x^{4} e^{x}}|t f(t)| d t \leq \frac{1}{|x|} \int_{0}^{x^{4} e^{x}} 2 d t=2\left|x^{3}\right| e^{x}
$$

where we use the fact that $|t f(t)| \leq 2(1)=2$ for $t \in[-2,2]$. Since this final expression goes to 0 as $x \rightarrow 0$, the squeeze theorem implies that the initial expression on the left does too, and so

$$
\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x-0}=0
$$

as well. Hence $F^{\prime}(0)$ exists and equals 0 .

