
Math 320-3: Final Exam Solutions
Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A non-constant differentiable function f : R2 → R2 such that D(f ◦f)(0, 0) is not invertible.
(b) A region D ⊆ R2 such that

∫∫
D x d(x, y) =

∫ π
0

∫ 2
0 r

2 cos θ dr dθ.
(c) A C1 surface in R3 which is not smooth at (0, 0, 1).
(d) A non-conservative C1 vector field F = (P,Q) on R2 \ {(0, 0)} such that Qx = Py.
(e) A C1 vector field F on R3 such that

∫∫
∂E F · n dS = Vol(E), where E is the solid enclosed

by the unit sphere centered at the origin and where ∂E has outward orientation.

Solution. (a) The function f(x, y) = (x, 0) works. This has Jacobian

Df(x, y) =

(
1 0
0 0

)
,

which is not invertible, so by the chain rule

D(f ◦ f)(0, 0) = Df(0, 0)Df(0, 0) =

(
1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
is not invertible either.

(b) The top-half of the ball B2(0, 0) works. In polar coordinates this is described by 0 ≤ r ≤ 2
and 0 ≤ θ ≤ π, so the given integral equality follows by the change of variables formula.

(c) The surface with equation z = 1 −
√
x2 + y2 works. This is an upside-down cone with its

“point” at (0, 0, 1).

(d) The field F =
(
− y
x2+y2

, x
x2+y2

)
works. You can check directly that Qx = Py, and this field

is not conservative on R2 \ {(0, 0)} since its integral over the unit circle oriented counterclockwise
is nonzero.

(e) The field F = (x, 0, 0) works, since
∫∫
∂E F ·n dS =

∫∫
E divF dV by the Divergence Theorem

and divF = 1.

2. Suppose that f : R2 → R is a differentiable function such that f(2tx, 2ty) = t2f(x, y) for all
(x, y) ∈ R2 and all t ∈ R. Show that

2x
∂f

∂x
(2x, 2y) + 2y

∂f

∂y
(2x, 2y) = 2f(x, y)

for all (x, y) ∈ R2.

Proof. Differentiating both sides with respect to t using the chain rule gives:

∂f

∂x
(2tx, 2ty)

∂(2tx)

∂t
+
∂f

∂y
(2tx, 2ty)

∂(2ty)

∂t
= 2tf(x, y),

or

2x
∂f

∂x
(2tx, 2ty) + 2y

∂f

∂t
(2tx, 2ty) = 2tf(x, y).

Setting t = 1 gives the desired equality.



3. Let S1 be the surface in R3 consisting of all points satisfying

xyz2 = 0

and S2 the surface consisting of all points satisfying

y − zexy = −1.

Show that the curve where S1 and S2 intersect is smooth at (1, 0, 1). Hint: Start by showing that
two of the variables (x, y, z) can be expressed as C1 functions of the third.

Proof. Let F : R3 → R2 be defined by

F (xyz2, y − zexy + 1)

and note that F (1, 0, 1) = (0, 0). We have

DF(y,z)(x, y, z) =

(
xz2 1− xzexy

2xyz −exy
)
,

sp

DF(y,z)(1, 0, 1) =

(
1 0
0 −1

)
is invertible. By the Implicit Function Theorem, there exist C1 functions y(x), z(x) defined on
some interval around x = 1 such that y = y(x) and z = z(x) satisfy F (x, y(x), z(x)) = 0. Thus

x = t, y = y(t), z = z(t)

give parametric equations for the curve in question. These equations in particular give x′(t) with
first component equal to 1 at t = 1, so x′(1) 6= 0 and hence the curve in question is smooth at
(1, 0, 1).

4. Suppose that f : R2 → R is a C1 function such that ‖Df(x, y)‖ ≤ ‖(x, y)‖ for all (x, y). If
f(0, 0) = 0, show that ∣∣∣∣∣

∫∫
B2(0,0)

(x+ y)f(x, y) d(x, y)

∣∣∣∣∣ ≤ 32
√

2π.

Hint: | cos θ + sin θ| ≤
√

2 for all θ, which you can use without justification.

Proof. The closed ball B2(0, 0) is compact and convex, so the Mean Value Theorem implies that
there exists c ∈ L(0; (x, y)) such that

f(x, y)− f(0, 0) = Df(c)

(
x
y

)
.

Taking norms and using the fact that f(0, 0) = 0 gives

‖f(x, y)‖ ≤
∥∥∥∥Df(c)

(
x
y

)∥∥∥∥ ≤ ‖Df(c)‖ ‖(x, y)‖ ≤ ‖c‖ ‖(x, y)‖ ≤ 2 ‖(x, y)‖ ,

where in the last inequality we use the fact that ‖c‖ ≤ 2 since c ∈ B2(0, 0). Thus:∣∣∣∣∣
∫∫

B2(0,0)
(x+ y)f(x, y) d(x, y)

∣∣∣∣∣ ≤
∫∫

B2(0,0)
|x+ y||f(x, y)|d(x, y)
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≤
∫∫

B2(0,0)
2|x+ y| ‖(x, y)‖ d(x, y).

Converting to polar coordinates gives∫∫
B2(0,0)

2|x+ y| ‖(x, y)‖ d(x, y) =

∫ 2π

0

∫ 2

0
2r3| cos θ + sin θ| dr dθ ≤

∫ 2π

0

∫ 2

0
4
√

2r3 dr dθ = 32
√

2π

as required. (Note that there are better bounds you can get as opposed to 32
√

2π.)

5. Suppose that φ : E → R3 and ψ : D → R3 (where E,D ⊆ R2) are C1 functions and that
τ : D → E is a one-to-one C1 function whose image is all of E and such that ψ = φ ◦ τ . If
detDτ(s, t) < 0 at all points (s, t) ∈ D except those where s = 0 or t = 0, show that∫∫

E
φ(u, v) · (φu(u, v)× φv(u, v)) d(u, v) = −

∫∫
D
ψ(s, t) · (ψs(s, t)× ψt(s, t)) d(s, t).

Proof. By the change of variables formula, we have∫∫
D
φ(τ(s, t))·(φu(τ(s, t))×φv(τ(u, v)))| detDτ(s, t)| d(s, t) =

∫∫
E
φ(u, v)·(φu(u, v)×φv(u, v)) d(u, v),

where (u, v) = τ(s, t). Since detDτ(s, t) < 0 everywhere on D except for on a set of measure zero,
we have

|detDτ(s, t)| = −(detDτ(s, t))

everywhere on D except for on a set of measure zero. Since values of integrals are unchanged when
altering the integrand on a set of measure zero, we get that the integral on the left above is

−
∫∫

D
φ(τ(s, t)) · (φu(τ(s, t))× φv(τ(u, v)))(detDτ(s, t)) d(s, t).

Since ψ = φ ◦ τ , by the chain rule we have

ψs(s, t)× ψt(s, t) = (detDτ(s, t))(φu(τ(s, t))× φv(τ(u, v)))

as we saw in class. Thus the integral above becomes

−
∫∫

D
ψ(s, t) · (ψs(s, t)× ψt(s, t)) d(s, t)

as required.

6. Suppose that D is the unit disk x2 + y2 ≤ 1 in R2 and that v : D → R is a C2 function such
that vxx + vyy = 0 on D. Show that if u : D → R is any C2 function, then∫

∂D
u∇v · (x, y) ds =

∫∫
D
∇u · ∇v dA

where ∂D is oriented counterclockwise. Hint: At any point (x, y) on the unit circle ∂D, the vector
(x, y) is normal to ∂D.
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Proof. We have
u∇v = (uvx, uvy),

so
u∇v · (x, y) = uvxx+ uvyy = (−uvy, uvx) · (−y, x).

Thus the integral on the left becomes∫
∂D

u∇v · (x, y) ds =

∫
∂D

(−uvy, uvx) ·T ds

where T = (−y, x) is the unit tangent vector along ∂D. By Green’s Theorem,∫
∂D

(−uvy, uvx) ·T ds =

∫∫
D

(
∂(uvx)

∂x
− ∂(−uvy)

∂y

)
dA =

∫∫
D

(uxvx + uvxx + uyvy + uvyy) dA.

Since vxx + vyy = 0 on D, this final integral simplifies to∫∫
D

(uxvx + uyvy) dA =

∫∫
D
∇u · ∇v dA

as required.

7. Do EITHER (a) OR (b).
Extra Credit: (5 points) Do the other one, making clear which is the part you want to count

for Problem 7 and which you want to count for extra credit.

(a) Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
0 if (x, y) is of the form

( p
n ,

q
n

)
for some p, q, n ∈ N

2 otherwise.

Show that the iterated integrals of f exist and are equal. Careful: Do not take it for granted that
f is integrable on [0, 1]× [0, 1].

(b) Let F(x, y) =
(

x
x2+y2

, y
x2+y2

)
. Show that if C1 and C2 are two simple, closed smooth

curves in R2 which do not pass through (0, 0), do not intersect each other, and which are oriented
clockwise, then

∫
C1

F ·T ds =
∫
C2

F ·T ds.

Proof. (a) Fix x ∈ [0, 1]. If x is not of the form p
n , then f(x, y) = 2 for all y ∈ [0, 1], so∫ 1

0
f(x, y) dy =

∫ 1

0
2 dy = 2

for such x. Suppose now that x = p
n for some p, n ∈ N. Then the only values of y which are of the

form q
n are

1

n
,

2

n
, . . . ,

n− 1

n
,
n

n
.

Thus f(x, y) = 0 only finitely often and f(x, y) = 2 infinitely often for such x as y-varies, so
the single variable function y 7→ f(x, y) is integrable over [0, 1] for such x (it has finitely many
discontinuities), and ∫ 1

0
f(x, y) dy =

∫ 1

0
2 dy = 2.
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Thus ∫ 1

0

∫ 1

0
f(x, y) dy dx =

∫ 1

0
2 dx = 2.

Switching the roles of x and y in the argument above shows that
∫ 1
0

∫ 1
0 f(x, y) dx dy also exists

and equals 2 as well.
(b) First we prove this using Green’s Theorem. Let D be the region between C1 and C2, so

that ∂D consists of both C1 and C2. Suppose that C2 is within C1, and switch the orientation of
C1. Then Green’s Theorem applies to give∫

−C1+C2

F ·T ds =

∫∫
D

(Qx − Py) dA

where
P =

x

x2 + y2
and Q =

y

x2 + y2
.

A direct computation shows that Qx = Py, so the integral on the right above is zero. Hence∫
−C1

F ·T ds+

∫
C2

F ·T ds = 0,

so ∫
C2

F ·T ds = −
∫
−C1

F ·T ds =

∫
C1

F ·T ds

as required.
Alternatively, we can recognize that F is the gradient of

f(x, y) =
1

2
ln(x2 + y2).

Then
∫
C1

F ·T ds and
∫
C2

F ·T ds are both zero since the integral of any conservative field over any
closed curve is zero.
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