Math 320-3: Final Exam Solutions
Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A non-constant differentiable function f : R? — R? such that D(fo f)(0,0) is not invertible.
(b) A region D C R? such that [[,zd(z,y) = [ 02 72 cos O dr db.
(c) A C* surface in R? which is not smooth at (0,0, 1).
(d) A non-conservative C! vector field F = (P,Q) on R?\ {(0,0)} such that Q, = P,.
(e) A C* vector field F on R? such that [[,. F-ndS = Vol(E), where E is the solid enclosed
by the unit sphere centered at the origin and where OF has outward orientation.

Solution. (a) The function f(z,y) = (x,0) works. This has Jacobian

Df(z,y) = (é 8) ;

which is not invertible, so by the chain rule

D(f o £)(0,0) = Df(0,0)Df(0,0) = (é 8) ((1) 8) - (é 8)

is not invertible either.

(b) The top-half of the ball By(0,0) works. In polar coordinates this is described by 0 < r <2
and 0 < 0 <, so the given integral equality follows by the change of variables formula.

(¢) The surface with equation z = 1 — \/2? + y? works. This is an upside-down cone with its
“point” at (0,0,1).

(d) The field F = (_%ﬂﬂ’ xQxTy2> works. You can check directly that @, = P,, and this field

is not conservative on R?\ {(0,0)} since its integral over the unit circle oriented counterclockwise
is nonzero.

(e) The field F = (z,0,0) works, since [, F-ndS = [[,divFdV by the Divergence Theorem
and divF = 1. O

2. Suppose that f : R? — R is a differentiable function such that f(2tx,2ty) = t>f(z,y) for all
(x,7) € R? and all t € R. Show that

9 d
2x8—£(2x, 2y) + 2ya‘£(2ﬂfa 2y) = 2f(2,y)

for all (x,y) € R2.

Proof. Differentiating both sides with respect to ¢ using the chain rule gives:

of d(2tz) Of 0(2ty)

or
of of _

Setting t = 1 gives the desired equality. O



3. Let S; be the surface in R? consisting of all points satisfying
asyzz =0
and S the surface consisting of all points satisfying
y— ze™ = —1.

Show that the curve where S; and S intersect is smooth at (1,0,1). Hint: Start by showing that
two of the variables (,%, 2) can be expressed as C! functions of the third.

Proof. Let F : R? — R? be defined by
F(xyz?y — ze™ 4 1)
and note that F'(1,0,1) = (0,0). We have

xz2?2 1-— :L‘Z@xy>
)

DF(%Z) (.CE, Y, Z) = (2.’13y2 Y

Sp

10
DF(y,Z)(l,O,l):<0 _1>

is invertible. By the Implicit Function Theorem, there exist C'! functions y(x), z(x) defined on
some interval around x = 1 such that y = y(z) and z = z(x) satisfy F(z,y(x), z(x)) = 0. Thus

x =1, y:y(t)7 Z:Z(t)

give parametric equations for the curve in question. These equations in particular give x'(¢) with
first component equal to 1 at ¢ = 1, so x’(1) # 0 and hence the curve in question is smooth at
(1,0,1). O

4. Suppose that f : R? — R is a C! function such that |Df(z,y)| < |[(z,y)| for all (x,y). If

£(0,0) = 0, show that
| J[ @risedey
B2(0,0)

Hint: |cosf + sin | < /2 for all §, which you can use without justification.

< 32V2r.

Proof. The closed ball Bs(0,0) is compact and convex, so the Mean Value Theorem implies that
there exists ¢ € L(0; (z,y)) such that

f(2,5) — £(0,0) = Df(c) @ |

Taking norms and using the fact that f(0,0) = 0 gives

Il < [psie) (3)] < I I < el ) < 2],

where in the last inequality we use the fact that ||c|| < 2 since ¢ € B(0,0). Thus:

'//32(070)(a:+y)f(m,y) d(z,y)| < //32(070) |+ y|| f(z,v)|d(z, y)




< / / 21z + gl l(z, )| d(z, ).
BQ(O,O)

Converting to polar coordinates gives

2 2 2 2
// 2|z 4+ yl||(z,9)| d(z,y) = / / 23| cos 0 + sin 0] dr df < / / 4213 dr df = 32V/27
B2(0,0) o Jo o Jo

as required. (Note that there are better bounds you can get as opposed to 32v/27.) ]
5. Suppose that ¢ : E — R3 and ¢ : D — R3 (where E,D C R?) are C! functions and that

7 : D — FE is a one-to-one C! function whose image is all of E and such that ¢ = ¢ o 7. If
det D7 (s,t) < 0 at all points (s,t) € D except those where s = 0 or ¢t = 0, show that

/(buv (Pu(u,v) X dp(u,v))d(u,v) /wst (s(s,t) x (s, 1)) d(s,t).

Proof. By the change of variables formula, we have

// ¢(T(87t))'(%(T(&t))chv(T(u,v)))ldetDT(S,t)ld(Si)=/ ¢(u, v)(Pu(t, V)X by (u, v)) d(u, v),
D E

where (u,v) = 7(s,t). Since det D7(s,t) < 0 everywhere on D except for on a set of measure zero,
we have

|det D7(s,t)| = —(det D7(s,t))

everywhere on D except for on a set of measure zero. Since values of integrals are unchanged when
altering the integrand on a set of measure zero, we get that the integral on the left above is

— [ otr(s0) - Gulr(5.8) % 60t o)) et Dr(s, ) ds. )
Since ¥ = ¢ o 7, by the chain rule we have
Giuls.8) X vn(s,t) = (det Dr(s, 1)) (6u(r(s,8)) x ¢u(r(u,0))
as we saw in class. Thus the integral above becomes
— [ st)- @ls.t) x s, 0) st
as required. -

6. Suppose that D is the unit disk 22 + % < 1 in R? and that v : D — R is a C? function such
that vz, + vyy = 0 on D. Show that if u: D — R is any C? function, then

/qu~(a:,y)d5:/ Vu-VuvdA
oD D

where 0D is oriented counterclockwise. Hint: At any point (z,y) on the unit circle 9D, the vector
(z,y) is normal to 9D.



Proof. We have
uVv = (uvg, uvy),

SO
uVv - (2,y) = uox + uvyy = (—uvy, wvg) - (—y, ).

Thus the integral on the left becomes
/ uVv - (z,y)ds = / (—uvy,uvy) - Tds
oD oD

where T = (—y, x) is the unit tangent vector along dD. By Green’s Theorem,

/ (—uvy, uvy) - Tds = // (8(uvx) — 8(—uvy)> dA = // (UgVe + UVzz + Uyvy + Uy, ) dA.
oD D Ox oy D

Since vzz + vyy = 0 on D, this final integral simplifies to

// (uxvx—l—uyvy)dA:// Vu-VuvdA
D D

as required. 0

7. Do EITHER (a) OR (b).
Extra Credit: (5 points) Do the other one, making clear which is the part you want to count
for Problem 7 and which you want to count for extra credit.

(a) Define f:[0,1] x [0,1] — R by

0 if (z,y) is of the form (%, %) for some p,q,n € N
f(@,y) = :
2 otherwise.

Show that the iterated integrals of f exist and are equal. Careful: Do not take it for granted that
f is integrable on [0, 1] x [0, 1].

(b) Let F(z,y) = <ﬁ7%+y2) Show that if C| and Cy are two simple, closed smooth

curves in R? which do not pass through (0,0), do not intersect each other, and which are oriented
clockwise, then fCl F -Tds= f02 F-Tds.

Proof. (a) Fix x € [0,1]. If x is not of the form 2, then f(z,y) =2 for all y € [0,1], so

/Olf(x,y)dy=/012dy=2

for such z. Suppose now that x = £ for some p,n € N. Then the only values of y which are of the

form £ are
n

2 n—1n
77’..-, 77'
n n n

1
n
Thus f(z,y) = 0 only finitely often and f(x,y) = 2 infinitely often for such z as y-varies, so
the single variable function y — f(z,y) is integrable over [0,1] for such z (it has finitely many

discontinuities), and
1 1
/ fla,y)dy = / 2dy = 2.
0 0

4



Thus

/Ol/olf(ac,y)dyda::/ol2dm:2.

Switching the roles of z and y in the argument above shows that fol fol f(x,y) dx dy also exists
and equals 2 as well.

(b) First we prove this using Green’s Theorem. Let D be the region between C; and Cy, so
that 9D consists of both C7 and Cs. Suppose that Cy is within C7, and switch the orientation of
(1. Then Green’s Theorem applies to give

/CI+CQF~Tds://D(Qa:—Py)dA

Yy
2+ 92’

A direct computation shows that @, = P,, so the integral on the right above is zero. Hence

/ F-Tds+/ F-Tds=0,
—Cl CQ

/F-Tds:—/ F-Tds:/ F-Tds
Ca —-C1 Cy
as required.

Alternatively, we can recognize that F is the gradient of

where

x
P:W and Q:

SO

fz,y) = %ln(x2 + y2).

Then |, o F-Tds and | Cy F - T ds are both zero since the integral of any conservative field over any
closed curve is zero. O



