Math 320-3: Final Exam Solutions Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A non-constant differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $D(f \circ f)(0,0)$ is not invertible.
(b) A region $D \subseteq \mathbb{R}^{2}$ such that $\iint_{D} x d(x, y)=\int_{0}^{\pi} \int_{0}^{2} r^{2} \cos \theta d r d \theta$.
(c) A C^{1} surface in \mathbb{R}^{3} which is not smooth at $(0,0,1)$.
(d) A non-conservative C^{1} vector field $\mathbf{F}=(P, Q)$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$ such that $Q_{x}=P_{y}$.
(e) A C^{1} vector field \mathbf{F} on \mathbb{R}^{3} such that $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} d S=\operatorname{Vol}(E)$, where E is the solid enclosed by the unit sphere centered at the origin and where ∂E has outward orientation.

Solution. (a) The function $f(x, y)=(x, 0)$ works. This has Jacobian

$$
D f(x, y)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

which is not invertible, so by the chain rule

$$
D(f \circ f)(0,0)=D f(0,0) D f(0,0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is not invertible either.
(b) The top-half of the ball $B_{2}(0,0)$ works. In polar coordinates this is described by $0 \leq r \leq 2$ and $0 \leq \theta \leq \pi$, so the given integral equality follows by the change of variables formula.
(c) The surface with equation $z=1-\sqrt{x^{2}+y^{2}}$ works. This is an upside-down cone with its "point" at $(0,0,1)$.
(d) The field $\mathbf{F}=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$ works. You can check directly that $Q_{x}=P_{y}$, and this field is not conservative on $\mathbb{R}^{2} \backslash\{(0,0)\}$ since its integral over the unit circle oriented counterclockwise is nonzero.
(e) The field $\mathbf{F}=(x, 0,0)$ works, since $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} d S=\iint_{E} \operatorname{div} \mathbf{F} d V$ by the Divergence Theorem and $\operatorname{div} \mathbf{F}=1$.
2. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function such that $f(2 t x, 2 t y)=t^{2} f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$ and all $t \in \mathbb{R}$. Show that

$$
2 x \frac{\partial f}{\partial x}(2 x, 2 y)+2 y \frac{\partial f}{\partial y}(2 x, 2 y)=2 f(x, y)
$$

for all $(x, y) \in \mathbb{R}^{2}$.
Proof. Differentiating both sides with respect to t using the chain rule gives:

$$
\frac{\partial f}{\partial x}(2 t x, 2 t y) \frac{\partial(2 t x)}{\partial t}+\frac{\partial f}{\partial y}(2 t x, 2 t y) \frac{\partial(2 t y)}{\partial t}=2 t f(x, y),
$$

or

$$
2 x \frac{\partial f}{\partial x}(2 t x, 2 t y)+2 y \frac{\partial f}{\partial t}(2 t x, 2 t y)=2 t f(x, y) .
$$

Setting $t=1$ gives the desired equality.
3. Let S_{1} be the surface in \mathbb{R}^{3} consisting of all points satisfying

$$
x y z^{2}=0
$$

and S_{2} the surface consisting of all points satisfying

$$
y-z e^{x y}=-1
$$

Show that the curve where S_{1} and S_{2} intersect is smooth at $(1,0,1)$. Hint: Start by showing that two of the variables (x, y, z) can be expressed as C^{1} functions of the third.

Proof. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F\left(x y z^{2}, y-z e^{x y}+1\right)
$$

and note that $F(1,0,1)=(0,0)$. We have

$$
D F_{(y, z)}(x, y, z)=\left(\begin{array}{cc}
x z^{2} & 1-x z e^{x y} \\
2 x y z & -e^{x y}
\end{array}\right),
$$

sp

$$
D F_{(y, z)}(1,0,1)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

is invertible. By the Implicit Function Theorem, there exist C^{1} functions $y(x), z(x)$ defined on some interval around $x=1$ such that $y=y(x)$ and $z=z(x)$ satisfy $F(x, y(x), z(x))=0$. Thus

$$
x=t, y=y(t), z=z(t)
$$

give parametric equations for the curve in question. These equations in particular give $\mathbf{x}^{\prime}(t)$ with first component equal to 1 at $t=1$, so $\mathbf{x}^{\prime}(1) \neq \mathbf{0}$ and hence the curve in question is smooth at $(1,0,1)$.
4. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{1} function such that $\|D f(x, y)\| \leq\|(x, y)\|$ for all (x, y). If $f(0,0)=0$, show that

$$
\left|\iint_{B_{2}(0,0)}(x+y) f(x, y) d(x, y)\right| \leq 32 \sqrt{2} \pi .
$$

Hint: $|\cos \theta+\sin \theta| \leq \sqrt{2}$ for all θ, which you can use without justification.
Proof. The closed ball $\overline{B_{2}(0,0)}$ is compact and convex, so the Mean Value Theorem implies that there exists $\mathbf{c} \in L(\mathbf{0} ;(x, y))$ such that

$$
f(x, y)-f(0,0)=D f(\mathbf{c})\binom{x}{y} .
$$

Taking norms and using the fact that $f(0,0)=0$ gives

$$
\|f(x, y)\| \leq\left\|D f(\mathbf{c})\binom{x}{y}\right\| \leq\|D f(\mathbf{c})\|\|(x, y)\| \leq\|\mathbf{c}\|\|(x, y)\| \leq 2\|(x, y)\|,
$$

where in the last inequality we use the fact that $\|\mathbf{c}\| \leq 2$ since $\mathbf{c} \in B_{2}(0,0)$. Thus:

$$
\left|\iint_{B_{2}(0,0)}(x+y) f(x, y) d(x, y)\right| \leq \iint_{B_{2}(0,0)}|x+y||f(x, y)| d(x, y)
$$

$$
\leq \iint_{B_{2}(0,0)} 2|x+y|\|(x, y)\| d(x, y)
$$

Converting to polar coordinates gives
$\iint_{B_{2}(0,0)} 2|x+y|\|(x, y)\| d(x, y)=\int_{0}^{2 \pi} \int_{0}^{2} 2 r^{3}|\cos \theta+\sin \theta| d r d \theta \leq \int_{0}^{2 \pi} \int_{0}^{2} 4 \sqrt{2} r^{3} d r d \theta=32 \sqrt{2} \pi$
as required. (Note that there are better bounds you can get as opposed to $32 \sqrt{2} \pi$.)
5. Suppose that $\phi: E \rightarrow \mathbb{R}^{3}$ and $\psi: D \rightarrow \mathbb{R}^{3}$ (where $E, D \subseteq \mathbb{R}^{2}$) are C^{1} functions and that $\tau: D \rightarrow E$ is a one-to-one C^{1} function whose image is all of E and such that $\psi=\phi \circ \tau$. If $\operatorname{det} D \tau(s, t)<0$ at all points $(s, t) \in D$ except those where $s=0$ or $t=0$, show that

$$
\iint_{E} \phi(u, v) \cdot\left(\phi_{u}(u, v) \times \phi_{v}(u, v)\right) d(u, v)=-\iint_{D} \psi(s, t) \cdot\left(\psi_{s}(s, t) \times \psi_{t}(s, t)\right) d(s, t) .
$$

Proof. By the change of variables formula, we have
$\iint_{D} \phi(\tau(s, t)) \cdot\left(\phi_{u}(\tau(s, t)) \times \phi_{v}(\tau(u, v))\right)|\operatorname{det} D \tau(s, t)| d(s, t)=\iint_{E} \phi(u, v) \cdot\left(\phi_{u}(u, v) \times \phi_{v}(u, v)\right) d(u, v)$,
where $(u, v)=\tau(s, t)$. Since det $D \tau(s, t)<0$ everywhere on D except for on a set of measure zero, we have

$$
|\operatorname{det} D \tau(s, t)|=-(\operatorname{det} D \tau(s, t))
$$

everywhere on D except for on a set of measure zero. Since values of integrals are unchanged when altering the integrand on a set of measure zero, we get that the integral on the left above is

$$
-\iint_{D} \phi(\tau(s, t)) \cdot\left(\phi_{u}(\tau(s, t)) \times \phi_{v}(\tau(u, v))\right)(\operatorname{det} D \tau(s, t)) d(s, t) .
$$

Since $\psi=\phi \circ \tau$, by the chain rule we have

$$
\psi_{s}(s, t) \times \psi_{t}(s, t)=(\operatorname{det} D \tau(s, t))\left(\phi_{u}(\tau(s, t)) \times \phi_{v}(\tau(u, v))\right)
$$

as we saw in class. Thus the integral above becomes

$$
-\iint_{D} \psi(s, t) \cdot\left(\psi_{s}(s, t) \times \psi_{t}(s, t)\right) d(s, t)
$$

as required.
6. Suppose that D is the unit disk $x^{2}+y^{2} \leq 1$ in \mathbb{R}^{2} and that $v: D \rightarrow \mathbb{R}$ is a C^{2} function such that $v_{x x}+v_{y y}=0$ on D. Show that if $u: D \rightarrow \mathbb{R}$ is any C^{2} function, then

$$
\int_{\partial D} u \nabla v \cdot(x, y) d s=\iint_{D} \nabla u \cdot \nabla v d A
$$

where ∂D is oriented counterclockwise. Hint: At any point (x, y) on the unit circle ∂D, the vector (x, y) is normal to ∂D.

Proof. We have

$$
u \nabla v=\left(u v_{x}, u v_{y}\right),
$$

so

$$
u \nabla v \cdot(x, y)=u v_{x} x+u v_{y} y=\left(-u v_{y}, u v_{x}\right) \cdot(-y, x) .
$$

Thus the integral on the left becomes

$$
\int_{\partial D} u \nabla v \cdot(x, y) d s=\int_{\partial D}\left(-u v_{y}, u v_{x}\right) \cdot \mathbf{T} d s
$$

where $\mathbf{T}=(-y, x)$ is the unit tangent vector along ∂D. By Green's Theorem,

$$
\int_{\partial D}\left(-u v_{y}, u v_{x}\right) \cdot \mathbf{T} d s=\iint_{D}\left(\frac{\partial\left(u v_{x}\right)}{\partial x}-\frac{\partial\left(-u v_{y}\right)}{\partial y}\right) d A=\iint_{D}\left(u_{x} v_{x}+u v_{x x}+u_{y} v_{y}+u v_{y y}\right) d A .
$$

Since $v_{x x}+v_{y y}=0$ on D, this final integral simplifies to

$$
\iint_{D}\left(u_{x} v_{x}+u_{y} v_{y}\right) d A=\iint_{D} \nabla u \cdot \nabla v d A
$$

as required.
7. Do EITHER (a) OR (b).

Extra Credit: (5 points) Do the other one, making clear which is the part you want to count for Problem 7 and which you want to count for extra credit.
(a) Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}0 & \text { if }(x, y) \text { is of the form }\left(\frac{p}{n}, \frac{q}{n}\right) \text { for some } p, q, n \in \mathbb{N} \\ 2 & \text { otherwise }\end{cases}
$$

Show that the iterated integrals of f exist and are equal. Careful: Do not take it for granted that f is integrable on $[0,1] \times[0,1]$.
(b) Let $\mathbf{F}(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$. Show that if C_{1} and C_{2} are two simple, closed smooth curves in \mathbb{R}^{2} which do not pass through $(0,0)$, do not intersect each other, and which are oriented clockwise, then $\int_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s$.

Proof. (a) Fix $x \in[0,1]$. If x is not of the form $\frac{p}{n}$, then $f(x, y)=2$ for all $y \in[0,1]$, so

$$
\int_{0}^{1} f(x, y) d y=\int_{0}^{1} 2 d y=2
$$

for such x. Suppose now that $x=\frac{p}{n}$ for some $p, n \in \mathbb{N}$. Then the only values of y which are of the form $\frac{q}{n}$ are

$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{n}{n}
$$

Thus $f(x, y)=0$ only finitely often and $f(x, y)=2$ infinitely often for such x as y-varies, so the single variable function $y \mapsto f(x, y)$ is integrable over [0,1] for such x (it has finitely many discontinuities), and

$$
\int_{0}^{1} f(x, y) d y=\int_{0}^{1} 2 d y=2 .
$$

Thus

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\int_{0}^{1} 2 d x=2
$$

Switching the roles of x and y in the argument above shows that $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$ also exists and equals 2 as well.
(b) First we prove this using Green's Theorem. Let D be the region between C_{1} and C_{2}, so that ∂D consists of both C_{1} and C_{2}. Suppose that C_{2} is within C_{1}, and switch the orientation of C_{1}. Then Green's Theorem applies to give

$$
\int_{-C_{1}+C_{2}} \mathbf{F} \cdot \mathbf{T} d s=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

where

$$
P=\frac{x}{x^{2}+y^{2}} \quad \text { and } \quad Q=\frac{y}{x^{2}+y^{2}} .
$$

A direct computation shows that $Q_{x}=P_{y}$, so the integral on the right above is zero. Hence

$$
\int_{-C_{1}} \mathbf{F} \cdot \mathbf{T} d s+\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s=0
$$

so

$$
\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s=-\int_{-C_{1}} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s
$$

as required.
Alternatively, we can recognize that \mathbf{F} is the gradient of

$$
f(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) .
$$

Then $\int_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s$ and $\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s$ are both zero since the integral of any conservative field over any closed curve is zero.

