
Math 320-3: Final Exam Solutions
Northwestern University, Spring 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A function f : R2 → R such that fx(0) exists but fxx(0) does not.
(b) A function f : R2 → R where one iterated integral exists but the other does not.
(c) A C1 surface in R3 which is not smooth at (1, 0, 0).

(d) A curve C over which the integral of F =
!
− y

x2+y2
, x
x2+y2

"
is nonzero.

(e) A compact subset K ⊆ R3 which does not satisfy the assumptions of the Mean Value
Inequality for functions K → R3.

Solution. (a) The function defined by f(x, y) = x2 sin 1
x for x ∕= 0 and f(0, y) = 0 works. We saw

back in the fall that this function is differentiable with respect to x, but not twice differentiable.
(b) The function defined by f(x, y) = y

x3 if x > 0 and −x < y < x and f(x, y) = 0 otherwise on
the rectangle [0, 1]× [−1, 1] works. For fixed x > 0, we have

# 1

−1
f(x, y) dy =

# x

−x

y

x3
dy = 0

and
$ 1
−1 f(0, y) dy =

$ 1
−1 0 dy = 0 as well. Thus the inner integral in

$ 1
0

$ 1
−1 f(x, y) dy dx is always

zero, so this iterated integral exists and equals 0. For fixed y ∈ [0, 1] we get:

# 1

0
f(x, y) dx =

# 1

y

y

x3
dx = −1

2
(y − 1

y )

and similarly for y ∈ [−1, 0] we get

# 1

0
f(x, y) dx =

# 1

−y

y

x3
dx = −1

2
(y − 1

y ).

But these resulting functions are unbounded on [−1, 1] and hence not integrable, so the inner
integral in

$ 1
−1

$ 1
0 f(x, y) dx dy never exists, and hence neither does this iterated integral.

(c) ***TO BE FINISHED***
(d) ***TO BE FINISHED***
(e) Any compact but non-convex subset will work, such as the region between two spheres

defined by 1 ≤ ‖(x, y, z)‖ ≤ 2.

2. Suppose f : Rn → Rm is continuous at x0 ∈ Rn. If f(x0) ∕= 0, show that there exists a ball
Bδ(x0) around x0 on which f is nonzero.

Proof. Since f(x0) ∕= 0, ‖f(x0)‖ > 0. Since f is continuous at x0, there exists δ > 0 such that

‖x− x0‖ < δ implies ‖f(x0)− f(x)‖ < ‖f(x0)‖ .

By the reverse triangle inequality, this gives

‖f(x0)‖ − ‖f(x)‖ < ‖f(x0)‖ , so 0 = ‖f(x0)‖ − ‖f(x0)‖ < ‖f(x)‖

for x ∈ Bδ(x0). Hence f is nonzero on Bδ(x0).



3. Define f : R3 → R by

f(x, y, z) =

%
x+ 2y + 3z + x2yz

x2+y2+z2
(x, y, z) ∕= (0, 0, 0)

0 (x, y, z) = (0, 0, 0).

Show that f is differentiable at (1, 1, 1) and at (0, 0, 0). (Only one of these should involve an actual
limit computation.)

Proof. On some ball around (1, 1, 1) the function f has the same values as the function g(x, y, z) =

x+2y+3z+ x2yz
x2+y2+z2

. Thus since g is differentiable at (1, 1, 1)—in particular because the fraction

used has differentiable numerator and denominator with nonzero denominator near (1, 1, 1)—f is
differentiable at (1, 1, 1) too.

Now, we have:
f(x, 0, 0) = x f(0, y, 0) = 2y f(0, 0, z) = 3z,

so fx(0, 0, 0) = 1, fy(0, 0, 0) = 2, and fz(0, 0, 0) = 3. The Jacobian matrix of f at (0, 0, 0) is thus
Df(0, 0, 0) =

&
1 2 3

'
, so we must verify that

lim
(h,k,ℓ)→(0,0,0)

f(h, k, ℓ)− f(0, 0, 0)−
&
1 2 3

' ( h
k
ℓ

)

‖(h, k, ℓ)‖ = 0.

The numerator of this quotient becomes:

h+ 2k + 3ℓ+
h2kℓ

‖(h, k, ℓ)‖2
− h− 2k − 3ℓ =

h2kℓ

‖(h, k, ℓ)‖2
,

so we are considering the limit of
h2kℓ

‖(h, k, ℓ)‖3
.

Since |h|, |k|, |ℓ| are all at most ‖(h, k, ℓ)‖, we have:

|h2kℓ|
‖(h, k, ℓ)‖3

≤ ‖(h, k, ℓ)‖4

‖(h, k, ℓ)‖3
= ‖(h, k, ℓ)‖ ,

so the squeeze theorem implies that

lim
(h,k,ℓ)→(0,0,0)

h2kℓ

‖(h, k, ℓ)‖3
= 0.

Hence f is differentiable at (0, 0, 0) as claimed.

4. Suppose C is a smooth, C1 curve in R2. Show that C has Jordan measure zero. Hint: Argue
that locally near each point of C you can express C as the graph of a continuous function, and
then argue that such graphs have Jordan measure zero.

Proof. Let φ : [a, b] → R2 be a smooth C1 parametrization of C. Then at any t ∈ [a, b] we have
φ(t) = (φ1(t),φ2(t)) ∕= (0, 0), so at least one of φ1(t) or φ2(t) is nonzero. If it is the former, the
Inverse Function Theorem implies that φ1 is invertible with C1 inverse near t, while if the latter
we get that φ2 is invertible with C1 inverse near t. Thus either

y = φ2(t) = (φ2 ◦ φ−1
1 )(x) or x = (φ1 ◦ φ−1

2 )(y)
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near φ(t) ∈ C. The upshot is that near any point on C we can express C as the graph of a C1

function.
To be clear, for any p ∈ C there exists an “interval” Ip on C (if p = φ(t′), Ip is the image under

φ an some interval around t′ in [a, b]) such that Ip is the graph of a continuous function. Since
C is compact (it is closed and bounded in R2), we can cover C using finitely many such intervals
Ip1 , . . . , Ipn . We showed in class and on the homework that the graph of a continuous function
has Jordan measure zero (the difference U(f, P ) − L(f, P ) upper and lower sums can be made
arbitrarily small since a continuous function is integrable, and this difference is precisely an outer
sum V (Ip, G) for some grid), so each Ipi has Jordan measure zero. Hence C, being the union of a
finite number of sets of Jordan measure zero, has Jordan measure zero itself.

5. Suppose a smooth, C1 curve C in Rn has parametrization x(t), a ≤ t ≤ b, and that y(u), c ≤ u ≤
d is another parametrization of C such that y = x◦τ for some bijective, C1 function τ : [c, d] → [a, b]
with nonzero derivative everywhere. If the tangent vectors determined by x and by y point in the
same direction at each point, show that

# d

c
F(y(u)) · y′(u) du =

# b

a
F(x(t)) · x′(t) dt

for any C1 vector field F on C. (In other words, show that vector line integrals are independent of
parametrization as long as the parametrizations in question induce the same orientation.)

Proof. ***TO BE FINISHED***

6. Let F : R3 \ {(0, 0, 0)} → R3 be the vector field

F(x, y, z) =

*
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

+
.

If S1 and S2 are two smooth, closed C1 surfaces in R3 which each enclose the origin and are each
oriented with outward-pointing normal vectors, show that

##

S1

F · n dσ =

##

S2

F · n dσ.

(There was a problem on the final practice problems which would be applicable, except that here
you cannot simply quote the result of that problem. The point is to justify this result in the case
of this specific vector field.) Hint: Compute the divergence of F.

Proof. ***TO BE FINISHED***

7. Suppose E ⊆ R2 is Jordan measurable and that f : E → R is integrable. Recall that, by
definition, this means that if R is a rectangle containing E, the extended function

f ext
E (x) =

%
f(x) x ∈ E

0 x /∈ E

is integrable over R. If A ⊆ E is also Jordan measurable, show that f is integrable on A, which
means that the extended function

f ext
A (x) =

%
f(x) x ∈ A

0 x /∈ A
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is integrable over R. Careful: f ext
A can be zero at points where f ext

E was nonzero. You can
use without justification the fact that upper and lower integrals can be approximated to whatever
degree of accuracy we want using small rectangles contained fully within the region of integration,
as opposed to ones which only intersect that region.

Proof. The key point in all of this is to use only rectangles contained within A or E when approx-
imating the required integrals, so that we can avoid the issue of how f ext is defined over A vs how
it is defined over E. Still, it is tricky to get all the details right!

Let R be a rectangular box containing E, which is thus also a rectangular box containing A.
Let ε > 0 and pick a grid G on R such that

,,,,,,

-

Ri⊆E

Mi|Ri|−
#

E
f dA

,,,,,,
< ε and

,,,,,,

-

Ri⊆E

mi|Ri|−
#

E
f dA

,,,,,,
< ε

where Mi,mi respectively denote the supremum and infimum of f over Ri. These inequalities imply
that -

Ri⊆E

(Mi −mi)|Ri| <
*#

E
f dA+ ε

+
−
*#

E
f dA− ε

+
= 2ε.

Now, the rectangles Ri ⊆ E can be separated into those contained in A and those not, so:

-

Ri⊆E

(Mi −mi)|Ri| =
-

Ri⊆A

(Mi −mi)|Ri|+
-

Ri ∕⊆A

(Mi −mi)|Ri| ≥
-

Ri⊆A

(Mi −mi)|Ri|

where we use the fact that Mi −mi is never negative. The left side is smaller than 2ε, and hence
so is the right.

By picking a possibly finer grid we get that

,,,,,,

-

Ri⊆A

Mi|Ri|− (U)

#

A
f dA

,,,,,,
< ε and

,,,,,,

-

Ri⊆A

mi|Ri|− (L)

#

A
f dA

,,,,,,
< ε.

These inequalities imply that

(U)

#

A
f dA− (L)

#

A
f dA <

.

/
-

Ri⊆A

Mi|Ri|+ ε

0

1−

.

/
-

Ri⊆A

mi|Ri|− ε

0

1 =
-

Ri⊆A

(Mi −mi)|Ri|+ 2ε.

Using the inequality derived above we thus get

(U)

#

A
f dA− (L)

#

A
f dA < 4ε.

The left side is non-negative, so since ε > 0 here is arbitrary we get that

(U)

#

A
f dA = (L)

#

A
f dA,

showing that f is integrable over A.
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