
Math 320-2: Final Exam Solutions
Northwestern University, Winter 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A pointwise convergent sequence of functions on [1, 2] which is not uniformly convergent.
(b) A subset of R with empty interior and closure equal to [0, 1] under the Euclidean metric.
(c) A disconnected subset of R2 which is compact with respect to the taxicab metric.
(d) A bounded continuous function f : R2 → R2 with respect to the box metric.
(e) A metric on R with respect to which (1, 2) is open but not connected.

Solution. (a) The sequence fn(x) = (x − 1)n works, analogously to how gn(x) = xn is such an
example on [0, 1].

(b) The set [0, 1] ∩Q works: this is dense in [0, 1] so its closure is [0, 1] and has empty interior
since it contains no irrationals.

(c) The subset consisting of the closed ball of radius 1 around (0, 0) and the closed ball of radius
1 around (5, 5) works.

(d) Any constant function works.
(e) The discrete metric is an example: since every subset if open with respect to a discrete

metric, (1, 2) is open but not connected since (1, 2) = (1, 32 ] ∪ (32 , 2) is a union of disjoint, open,
nonempty sets.

2. For each n ∈ N, define the function fn : [0, 2]→ R by
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Show that (fn) converges uniformly on [0, 2].

Proof. First, for a fixed x ∈ [0, 2], we have

fn(x)→ x sin(0) +
√
x2 =

√
x2

so (fn) converges pointwise to f(x) =
√
x2. To show that this convergence is uniform, let ε > 0

and pick N ∈ N such that 25
n < ε2. Then if n ≥ N , we have for x ∈ [0, 2]:
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Thus fn → f uniformly as claimed.



3. Suppose that f : R→ R is analytic on all of R and that its 3rd derivative satisfies

f
′′′
(

1

n

)
= 0 for all n ∈ N.

Show that f is a polynomial of degree at most 2. Hint: Argue that f
′′′

(0) = 0 and use this to show
that f

′′′
must be zero everywhere. Also recall that derivatives of analytic functions are analytic.

Proof. Since f is analytic, so is f ′, and hence f ′′, and hence f ′′′ as well. Analytic functions are
continuous, so f ′′′ is continuous and thus since 1

n → 0, we have

0 = f ′′′
(

1

n

)
→ f ′′′(0),

so f ′′′(0) = 0. If f ′′′ was not the zero function, there would thus exist an interval around 0 on which
f was zero only at x = 0, which is not possible since any such interval will contain a number of
the form x = 1

n at which f is also zero. Thus f ′′′ must be the zero function. (Said more succinctly
using fancier language, a nonzero analytic function has isolated zeroes, and x = 0 in this case is
not an isolated zero of the analytic function f ′′′, so f ′′′ must be the zero function.)

If f ′′′ is the zero function, all higher order derivatives are also identically zero. Thus the Taylor
series of f around 0 looks like

f(x) = a0 + a1x+ a2x
2 + a bunch of terms which are all zero,

so f is a polynomial of degree at most 2 as claimed.

4. Equip R2 with the Euclidean metric and let Q2 denote the set of points in R2 whose coordinates
are both rational. Determine, with justification, the boundary of Q2 in R2.

Solution. We claim that the boundary of Q2 in R2 is all of R2. Note that it suffices to show this
using the box metric on R2 since the boundary with respect to the Euclidean metric is the same
as the boundary with respect to the box metric. Take any (a, b) ∈ R2 and any ball Br(a, b). Since
Q is dense in R, there exist m,n ∈ Q such that m ∈ (a− r, a+ r) and n ∈ (b− r, b+ r), and thus
(m,n) ∈ Br(a, b) = (a− r, a+ r)× (b− r, b+ r). (Note that if we had stuck with a Euclidean ball,
the resulting (m,n) might not be in Br(a, b) since in this case this ball is smaller than the rectangle
(a− r, a+ r)× (b− r, b+ r). You would have to be a bit more careful about how you pick m and
n.)

Similarly, since the irrationals are dense in R, there exist x, y ∈ R\Q such that x ∈ (a− r, a+ r)
and y ∈ (b− r, b+ r), so that (x, y) ∈ Br(a, b). Thus any ball around (a, b) contains something in
Q2 and something in R2\Q2, so (a, b) is a boundary point of Q2 as claimed.

5. Let Y be a discrete metric space and suppose that R3 is equipped with the Euclidean metric.
Show that any continuous function f : R3 → Y is constant.

Proof. Since R3 is connected and f is continuous, the image f(R3) of f is connected as well. But
the only nonempty connected subsets of a discrete space are those consisting of single points, so
f(R3) consists of a single point, meaning that f is constant.

To justify that the only nonempty connected subspaces of a discrete space are singletons, suppose
that S ⊆ Y is connected and nonempty. Take p ∈ S. Then

S = {p} ∪ (S\{p})

is a union of two disjoint open subsets (since any subset of a discrete space is open), so one set on
the right must be empty. Thus S\{p} is empty, meaning that S = {p} as required.
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6. Suppose that K is a compact metric space and that f : K → R is a function which is locally
bounded, meaning that for every p ∈ K there exists an open ball Br(p) around p on which f is
bounded. Show that f is bounded on all of K.

(Careful: we are not assuming that f is continuous. Also, we do not know beforehand that the
bound on f over one open ball must be the same as the bound it has over a different open ball.)

Proof. Since f is locally bounded, for any p ∈ K there exists Br(p)(p) on which f is bounded, say
by Mp ∈ R. (The subscript is used to emphasize the dependence on p.) The open balls Br(p)(p)
together form an open cover of K, so since K is compact this has a finite subcover, say

K ⊆ Br(p1)(p1) ∪ · · · ∪Br(pn)(pn).

Let M be the maximum of the corresponding local bounds Mp1 , . . . ,Mpn . For any q ∈ K, q is in
some open ball Br(pi)(pi), so |f(q)| ≤ Mpi ≤ M . Thus |f(q)| ≤ M for all q ∈ K, so f is bounded
on all of K.

7. Let D be the subset of R2 given by the inequality (x − 2)2 + (y − 3)2 ≤ 1, so D consists of
the circle (x − 2)2 + (y − 3)2 = 1 and the region it encloses, and let f : D → R be the function
f(x, y) = xy − x2 + yexy. Show that there exists (a, b) ∈ D such that

f(x, y) ≤ f(a, b) for all (x, y) ∈ D.

Proof. First, D is bounded since it is contained in the open ball B2(2, 3) taken with respect to the
Euclidean metric, and it is closed since it contains its boundary circle. (Or, we can also say that
it is closed since it equals the closed ball of radius 1 around (2, 3), and closed balls in any metric
space are always closed.) Thus D is compact by the Heine-Borel Theorem.

For (xn, yn) → (x, y) in D, we have xnyn → xy, x2n → x2, and exnyn → exy since the single-
variable exponential function is continuous. Thus f(xn, yn)→ f(x, y), so f is continuous and thus
the Extreme Value Theorem implies that f has a maximum, which is what is asked for.
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