
Math 320-2: Final Exam Solutions
Northwestern University, Winter 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A convergent series

∑
an of numbers such that

∑
a2n diverges.

(b) A sequence of functions on R which converges uniformly on [0, 12 ] but not on [0, 1].
(c) A metric on R relative to which Q is bounded.
(d) Two connected subsets A,B of R2 such that A ∩B is disconnected.
(e) A nonempty compact subset of Q with respect to the Euclidean metric.

Solution. (a) The series
∑

(−1)n 1√
n

works: this converges but
∑ 1

n does not.

(b) The sequence fn(x) = xn works: this converges uniformly to 0 on [0, 12 ] but not on [0, 1]
since the pointwise limit on [0, 1] is not continuous.

(c) The discrete metric works: Q is contained in B2(0).
(d) This problem was omitted since the original version was nonsense: it had R instead of R2.

In R2 you can draw pictures of possible A and B, say A the unit square [0, 1]×[0, 1] with the bottom
edge removed and B the unit square with the top edge removed. These are both connected but
their intersection is the union of the two vertical edges of the unit square, which is not connected.

(e) Any set consisting of a single element works.

2. Suppose (fn) is a sequence of continuous functions on R which converges uniformly to a function
f . If (xn) is a sequence in R which converges to x, show that the sequence (fn(xn)) in R converges
to f(x). (To be clear, (fn(xn)) is the sequence of numbers whose n-th term is what you get when
you evaluate fn at xn.) Hint:

|fn(xn)− f(x)| = |fn(xn)− f(xn) + f(xn)− f(x)|

Proof. Let ε > 0. Since fn → f uniformly, there exists N ∈ N such that

|fn(x)− f(x)| < ε

2
for n ≥ N and all x ∈ R.

In particular, taking such an x to be xn itself, we get

|fn(x)− f(x)| < ε

2
for n ≥ N.

Since each fn is continuous, the uniform limit f is continuous as well, so since xn → x we must
have f(xn)→ f(x). Thus there exists M ∈ N such that

|f(xn)− f(x)| < ε

2
for n ≥M.

Hence if n ≥ max{N,M}, we get:

|fn(xn)− f(x)| = |fn(xn)− f(xn) + f(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

2
+
ε

2
= ε,

so fn(xn)→ f(x) as claimed.

3. Show that the following series converges uniformly on any compact subset of R.

∞∑
n=1

ex

n
sin
(x
n

)



Proof. Let K be a compact subset of R. Then K is bounded, say by M > 0. Then for x ∈ K we
have: ∣∣∣∣exn sin

(x
n

)∣∣∣∣ =

∣∣∣∣exn
∣∣∣∣ ∣∣∣sin xn ∣∣∣ ≤ eM

n

∣∣∣x
n

∣∣∣ ≤ MeM

n2
.

Since
∑ 1

n2 converges,
∑ MeM

n2 does as well since MeM is a constant, so the Weierstrass M -test
implies that the series in question converges uniformly on K as desired.

4. Show that the following subset S of R3 is closed in R3 with respect to the Euclidean metric.

S = {(x, y, z) ∈ R3 | x2 + xy + sin(xyz) = 1}

Proof 1. Let (xn, yn, zn) be a sequence in S and suppose (xn, yn, zn) → (x, y, z) ∈ R. Then since
converges in R3 with respect to the Euclidean metric is equivalent to converges of each individual
component sequence, we have

xn → x, yn → y, and zn → z.

Since the limit of a product of converges sequences in R is the product of the individual limits, we
get

x2n → x2, xnyn → xy, and xnynzn → xyz.

Since the single variable sine function is continuous, we then get sin(xnynzn)→ sin(xyz). Thus

x2n + xnyn + sin(xnynzn)→ x2 + xy + sin(xyz),

and since the left-hand side is the constant sequence 1 (since (xn, yn, zn) ∈ S), we must have that
the right-hand side is 1 as well. Thus (x, y, z) ∈ S, so S is closed in R3.

Proof 2. The function f : R3 → R defined by

f(x, y, z) = x2 + xy + sin(xyz)

is continuous since it is a sum of products and compositions of continuous functions. Thus the
preimage of the closed set {1} ⊆ R is closed in R3, and this preimage is precisely S.

5. Suppose (X, d) is a metric space and that K and L are compact subsets of X. Show that the
union K ∪ L is compact as well.

Proof 1. Let {Uα} be an open cover of K ∪ L. Since K ⊆ K ∪ L and L ⊆ K ∪ L, this same cover
is then also an open cover of both K and L. Considering it as a cover of K, the compactness of K
implies that there is a finite subcover:

K ⊆ Uα1 ∪ · · · ∪ Uαn ,

and considering it as a cover of L, the compactness L gives a finite subcover

L ⊆ Uβ1 ∪ · · · ∪ Uβm .

Then
K ∪ L ⊆ Uα1 ∪ · · · ∪ Uαn ∪ Uβ1 ∪ · · · ∪ Uβm ,

so Uα1 , . . . , Uαn , Uβ1 , · · · , Uβm is a finite subcover of the original open cover of K ∪ L. Thus any
open cover of K ∪ L has a finite subcover, so K ∪ L is compact.
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Proof 2. Let (xn) be a sequence in K ∪ L. If only finitely many terms xn1 , . . . , xnk
were in K and

only finitely many xm1 , . . . , xm`
were in L, then

xn1 , . . . , xnk
, xm1 , . . . , xm`

would be the only terms in the sequence in K ∪ L, which is nonsense since every term of (xn) is
supposed to be in K ∪L and a sequence contains infinitely many terms. Thus at least one of K or
L contains infinitely many terms from the given sequence.

Without loss of generality, suppose K contains infinitely many of these terms and call them
(xnk

). Since K is compact, this sequence (xnk
) in K has a convergent subsequence, say xnk`

converges to some x ∈ K. Then xnk`
is a convergent subsequence of the original sequence (xn)

converging to x ∈ K ∪ L, so K ∪ L is compact.

6. Suppose (X, dX) and (Y, dY ) are metric spaces and that f, g : X → Y are both continuous
functions. If A is a dense subset of X such that

f(a) = g(a) for all a ∈ A,

show that f(x) = g(x) for all x ∈ X. (This says that continuous functions which agree on a dense
set must be the same.)

Proof. Let x ∈ X. Since A is dense in X, there exists a sequence an → x with all an ∈ A. Since f
and g are each continuous,

f(an)→ f(x) and g(an)→ g(x).

But f(an) = g(an) for all n, so the sequences above are the same sequence, and hence their limits
must be the same. Thus f(x) = g(x) as claimed.

7. Recall that C[a, b] denotes the space of continuous functions [a, b] → R equipped with the sup
metric. Define T : C[0, 5]→ C[0, 2] by

(Tf)(x) = 3 +

∫ x2+1

0
(f(t) + 2ecos t) dt.

(To be clear, T sends a function f ∈ C[0, 5] to the function Tf ∈ C[0, 2] whose value at x is the
given expression.) Show that T is continuous. Hint: Figure out how to relate d(Tf, Tg) and d(f, g).

Proof. Note that here I made a slight change to the problem, which does not actually affect the
solution at all. In the original version the domain of T was C[0, 2], but in the given integral
definition we actually need f to be defined on [0, 5] since the largest upper limit of integration will
be 5 when x = 2. Thus the domain of T should actually consist of functions defined on [0, 5].

Let f, g ∈ C[0, 5]. For any x ∈ [0, 2] we have:

|(Tf)(x)− (Tg)(x)| =

∣∣∣∣∣3 +

∫ x2+1

0
(f(t) + 2ecos t) dt− 3−

∫ x2+1

0
(g(t) + 2ecos t) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ x2+1

0
(f(t)− g(t)) dt

∣∣∣∣∣
=

∫ x2+1

0
|f(t)− g(t)| dt
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≤
∫ x2+1

0
d(f, g) dt,

where in the last step we use the fact that |f(t)− g(t)| ≤ supy∈[0,5] |f(y)− g(y)| for any t ∈ [0, 5].
Thus

|(Tf)(x)− (Tg)(x)| ≤
∫ x2+1

0
d(f, g) dt = (x2 + 1)d(f, g) ≤ 5d(f, g).

Thus the supremum of the terms on the left is also bounded by 5d(f, g), so we get

d(Tf, Tg) ≤ 5d(f, g).

Hence for ε > 0, setting δ = ε
5 gives that

d(f, g) < δ implies d(Tf, Tg) ≤ 5d(f, g) < 5δ = ε,

which shows that T is (uniformly) continuous as claimed.
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