Math 320-3: Final Exam
 Northwestern University, Spring 2015

Name: \qquad

1. (10 points) Give an example of each of the following. No justification is required.
(a) A non-constant differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $D(f \circ f)(0,0)$ is not invertible.
(b) A region $D \subseteq \mathbb{R}^{2}$ such that $\iint_{D} x d(x, y)=\int_{0}^{\pi} \int_{0}^{2} r^{2} \cos \theta d r d \theta$.
(c) A C^{1} surface in \mathbb{R}^{3} which is not smooth at $(0,0,1)$.
(d) A non-conservative C^{1} vector field $\mathbf{F}=(P, Q)$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$ such that $Q_{x}=P_{y}$.
(e) A C^{1} vector field \mathbf{F} on \mathbb{R}^{3} such that $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} d S=\operatorname{Vol}(E)$, where E is the solid enclosed by the unit sphere centered at the origin and where ∂E has outward orientation.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (15 points) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function such that $f(2 t x, 2 t y)=t^{2} f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$ and all $t \in \mathbb{R}$. Show that

$$
2 x \frac{\partial f}{\partial x}(2 x, 2 y)+2 y \frac{\partial f}{\partial y}(2 x, 2 y)=2 f(x, y)
$$

for all $(x, y) \in \mathbb{R}^{2}$.
3. (15 points) Let S_{1} be the surface in \mathbb{R}^{3} consisting of all points satisfying

$$
x y z^{2}=0
$$

and S_{2} the surface consisting of all points satisfying

$$
y-z e^{x y}=-1
$$

Show that the curve where S_{1} and S_{2} intersect is smooth at $(1,0,1)$. Hint: Start by showing that two of the variables (x, y, z) can be expressed as C^{1} functions of the third.
4. (15 points) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{1} function such that $\|D f(x, y)\| \leq\|(x, y)\|$ for all (x, y). If $f(0,0)=0$, show that

$$
\left|\iint_{B_{2}(0,0)}(x+y) f(x, y) d(x, y)\right| \leq 32 \sqrt{2} \pi .
$$

Hint: $|\cos \theta+\sin \theta| \leq \sqrt{2}$ for all θ, which you can use without justification.
5. (15 points) Suppose that $\phi: E \rightarrow \mathbb{R}^{3}$ and $\psi: D \rightarrow \mathbb{R}^{3}$ (where $E, D \subseteq \mathbb{R}^{2}$) are C^{1} functions and that $\tau: D \rightarrow E$ is a one-to-one C^{1} function whose image is all of E and such that $\psi=\phi \circ \tau$. If $\operatorname{det} D \tau(s, t)<0$ at all points $(s, t) \in D$ except those where $s=0$ or $t=0$, show that

$$
\iint_{E} \phi(u, v) \cdot\left(\phi_{u}(u, v) \times \phi_{v}(u, v)\right) d(u, v)=-\iint_{D} \psi(s, t) \cdot\left(\psi_{s}(s, t) \times \psi_{t}(s, t)\right) d(s, t) .
$$

6. (15 points) Suppose that D is the unit disk $x^{2}+y^{2} \leq 1$ in \mathbb{R}^{2} and that $v: D \rightarrow \mathbb{R}$ is a C^{2} function such that $v_{x x}+v_{y y}=0$ on D. Show that if $u: D \rightarrow \mathbb{R}$ is any C^{2} function, then

$$
\int_{\partial D} u \nabla v \cdot(x, y) d s=\iint_{D} \nabla u \cdot \nabla v d A
$$

where ∂D is oriented counterclockwise. Hint: At any point (x, y) on the unit circle ∂D, the vector (x, y) is normal to ∂D.
7. (15 points) Do EITHER (a) OR (b).

Extra Credit: (5 points) Do the other one, making clear which is the part you want to count for Problem 7 and which you want to count for extra credit.
(a) Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}0 & \text { if }(x, y) \text { is of the form }\left(\frac{p}{n}, \frac{q}{n}\right) \text { for some } p, q, n \in \mathbb{N} \\ 2 & \text { otherwise } .\end{cases}
$$

Show that the iterated integrals of f exist and are equal. Careful: Do not take it for granted that f is integrable on $[0,1] \times[0,1]$.
(b) Let $\mathbf{F}(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$. Show that if C_{1} and C_{2} are two simple, closed smooth curves in \mathbb{R}^{2} which do not pass through $(0,0)$, do not intersect each other, and which are oriented clockwise, then $\int_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s$.

