Math 320-3: Final Exam Northwestern University, Spring 2015

Name:

1. (10 points) Give an example of each of the following. No justification is required.

(a) A non-constant differentiable function f: R² → R² such that D(f ∘ f)(0,0) is not invertible.
(b) A region D ⊆ R² such that ∫∫_D x d(x, y) = ∫₀^π ∫₀² r² cos θ dr dθ.
(c) A C¹ surface in R³ which is not smooth at (0,0,1).
(d) A non-conservative C¹ vector field **F** = (P,Q) on R² \ {(0,0)} such that Q_x = P_y.
(e) A C¹ vector field **F** on R³ such that ∫∫_{∂E} **F** · **n** dS = Vol(E), where E is the solid enclosed by the unit sphere centered at the origin and where ∂E has outward orientation.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (15 points) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is a differentiable function such that $f(2tx, 2ty) = t^2 f(x, y)$ for all $(x, y) \in \mathbb{R}^2$ and all $t \in \mathbb{R}$. Show that

$$2x\frac{\partial f}{\partial x}(2x,2y) + 2y\frac{\partial f}{\partial y}(2x,2y) = 2f(x,y)$$

for all $(x, y) \in \mathbb{R}^2$.

3. (15 points) Let S_1 be the surface in \mathbb{R}^3 consisting of all points satisfying

$$xyz^2 = 0$$

and S_2 the surface consisting of all points satisfying

$$y - ze^{xy} = -1.$$

Show that the curve where S_1 and S_2 intersect is smooth at (1,0,1). Hint: Start by showing that two of the variables (x, y, z) can be expressed as C^1 functions of the third.

4. (15 points) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is a C^1 function such that $||Df(x,y)|| \le ||(x,y)||$ for all (x,y). If f(0,0) = 0, show that

$$\left| \iint_{B_2(0,0)} (x+y) f(x,y) \, d(x,y) \right| \le 32\sqrt{2}\pi.$$

Hint: $|\cos \theta + \sin \theta| \le \sqrt{2}$ for all θ , which you can use without justification.

5. (15 points) Suppose that $\phi: E \to \mathbb{R}^3$ and $\psi: D \to \mathbb{R}^3$ (where $E, D \subseteq \mathbb{R}^2$) are C^1 functions and that $\tau: D \to E$ is a one-to-one C^1 function whose image is all of E and such that $\psi = \phi \circ \tau$. If det $D\tau(s,t) < 0$ at all points $(s,t) \in D$ except those where s = 0 or t = 0, show that

$$\iint_E \phi(u,v) \cdot (\phi_u(u,v) \times \phi_v(u,v)) \, d(u,v) = -\iint_D \psi(s,t) \cdot (\psi_s(s,t) \times \psi_t(s,t)) \, d(s,t).$$

6. (15 points) Suppose that D is the unit disk $x^2 + y^2 \leq 1$ in \mathbb{R}^2 and that $v: D \to \mathbb{R}$ is a C^2 function such that $v_{xx} + v_{yy} = 0$ on D. Show that if $u: D \to \mathbb{R}$ is any C^2 function, then

$$\int_{\partial D} u \nabla v \cdot (x, y) \, ds = \iint_D \nabla u \cdot \nabla v \, dA$$

where ∂D is oriented counterclockwise. Hint: At any point (x, y) on the unit circle ∂D , the vector (x, y) is normal to ∂D .

7. (15 points) Do **EITHER** (a) **OR** (b).

Extra Credit: (5 points) Do the other one, making clear which is the part you want to count for Problem 7 and which you want to count for extra credit.

(a) Define $f: [0,1] \times [0,1] \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) \text{ is of the form } \left(\frac{p}{n}, \frac{q}{n}\right) \text{ for some } p, q, n \in \mathbb{N} \\ 2 & \text{otherwise.} \end{cases}$$

Show that the iterated integrals of f exist and are equal. Careful: Do not take it for granted that f is integrable on $[0, 1] \times [0, 1]$.

(b) Let $\mathbf{F}(x,y) = \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right)$. Show that if C_1 and C_2 are two simple, closed smooth curves in \mathbb{R}^2 which do not pass through (0,0), do not intersect each other, and which are oriented clockwise, then $\int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds$.