Math 320-3: Final Exam

Northwestern University, Spring 2020

Name: \qquad

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{R} with empty interior whose boundary is $[0,1]$.
(b) A function $f(x, y)$ not continuous at $\mathbf{0}$ for which the single variable functions obtained by holding x or y constant at 0 are continuous.
(c) A non-constant C^{1} function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ to which the Inverse Function Theorem does not apply.
(d) A non-constant function $f:[0,3] \rightarrow \mathbb{R}$ whose graph has Jordan measure zero in \mathbb{R}^{2}.
(e) A non-constant function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for which $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose $I \subseteq \mathbb{R}$ is connected. Show that I is an interval. (Take the definition of an interval to be a set $I \subseteq \mathbb{R}$ such that if $x<y<z$ and $x, z \in I$, then $y \in I$.)
3. (10 points) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies

$$
\|f(\mathbf{x})-f(\mathbf{y})\| \leq\|\mathbf{x}-\mathbf{y}\|^{\alpha}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ where $\alpha>1$. Show that f is constant. Hint: This inequality implies that f is differentiable, why?
4. (10 points) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} and let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$. Take γ to be the path from a to \mathbf{x} defined by

$$
\gamma(t)=t^{2} \mathbf{x}+\left(1-t^{2}\right) \mathbf{a}, 0 \leq t \leq 1
$$

If the norm of $D f$ is bounded by $\frac{1}{2}$ at any point on γ, show that $\|f(\mathbf{x})-f(\mathbf{a})\| \leq\|\mathbf{x}-\mathbf{a}\|$.
5. (10 points) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}e^{x y} & x<y^{2} \\ 30 & x=y^{2} \\ y \sin \left(e^{x}\right) & x>y^{2}\end{cases}
$$

Show that f is integrable on the square $[-2,2] \times[-2,2]$.
6. (10 points) Define $f:[0,1] \times[-1,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{y}{x^{3}} & x>0 \text { and }-x<y<x \\ 0 & \text { otherwise }\end{cases}
$$

One of the iterated integrals $\int_{0}^{1} \int_{-1}^{1} f(x, y) d y d x, \int_{-1}^{1} \int_{0}^{1} f(x, y) d x d y$ exists and the other does not; determine which is which.
7. (10 points) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable over the unit ball $B_{1}(\mathbf{0})$ and that $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1}, one-to-one, and has $D \phi$ invertible at all points. Suppose further that the image of $B_{1}(\mathbf{0})$ under ϕ is $B_{1}(\mathbf{0})$ itself, that $f \circ \phi=f$ on $B_{1}(\mathbf{0})$, and that $\operatorname{det} D \phi= \pm 2$ at all points of $B_{1}(\mathbf{0})$. Show that

$$
\int_{B_{1}(\mathbf{0})} f(\mathbf{x}) d \mathbf{x}=0 .
$$

