Math 320-2: Final Exam Northwestern University, Winter 2015

Name:			
ranic.			

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A pointwise convergent sequence of functions on [1,2] which is not uniformly convergent.
 - (b) A subset of \mathbb{R} with empty interior and closure equal to [0,1] under the Euclidean metric.
 - (c) A disconnected subset of \mathbb{R}^2 which is compact with respect to the taxicab metric. (d) A bounded continuous function $f: \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the box metric.

 - (e) A metric on \mathbb{R} with respect to which (1,2) is open but not connected.

2. (15 points) For each $n \in \mathbb{N}$, define the function $f_n : [0,2] \to \mathbb{R}$ by

$$f_n(x) = x \sin\left(\frac{x}{n}\right) + \sqrt{x^2 + \frac{1}{n}}.$$

Show that (f_n) converges uniformly on [0,2].

3. (15 points) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is analytic on all of \mathbb{R} and that its 3rd derivative satisfies

$$f^{'''}\left(\frac{1}{n}\right) = 0 \text{ for all } n \in \mathbb{N}.$$

Show that f is a polynomial of degree at most 2. Hint: Argue that f'''(0) = 0 and use this to show that f''' must be zero everywhere. Also recall that derivatives of analytic functions are analytic.

1. (15 points) Equip \mathbb{R}^2 with the Euclidean metric and let \mathbb{Q}^2 denote the set of points in \mathbb{R}^2 whose coordinates are both rational. Determine, with justification, the boundary of \mathbb{Q}^2 in \mathbb{R}^2 .	se

5. (15 points) Let Y be a discrete metric space and suppose that \mathbb{R}^3 is equipped with the Euclidean metric. Show that any continuous function $f: \mathbb{R}^3 \to Y$ is constant.					

6. (15 points) Suppose that K is a compact metric space and that $f: K \to \mathbb{R}$ is a function which is *locally bounded*, meaning that for every $p \in K$ there exists an open ball $B_r(p)$ around p on which f is bounded. Show that f is bounded on all of K.

(Careful: we are not assuming that f is continuous. Also, we do not know beforehand that the bound on f over one open ball must be the same as the bound it has over a different open ball.)

7. (15 points) Let D be the subset of \mathbb{R}^2 given by the inequality $(x-2)^2+(y-3)^2\leq 1$, so D consists of the circle $(x-2)^2+(y-3)^2=1$ and the region it encloses, and let $f:D\to\mathbb{R}$ be the function $f(x,y)=xy-x^2+ye^{xy}$. Show that there exists $(a,b)\in D$ such that

$$f(x,y) \le f(a,b)$$
 for all $(x,y) \in D$.