Math 320-2: Final Exam Northwestern University, Winter 2016

Name:

- 1. (15 points) Give an example of each of the following. You do not have to justify your answer.

 - (a) A convergent series ∑a_n of numbers such that ∑a_n² diverges.
 (b) A sequence of functions on ℝ which converges uniformly on [0, ¹/₂] but not on [0, 1].

 - (c) A metric on \mathbb{R} relative to which \mathbb{Q} is bounded. (d) Two connected subsets A, B of \mathbb{R}^2 such that $A \cap B$ is disconnected.
 - (e) A nonempty compact subset of \mathbb{Q} with respect to the Euclidean metric.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose (f_n) is a sequence of continuous functions on \mathbb{R} which converges uniformly to a function f. If (x_n) is a sequence in \mathbb{R} which converges to x, show that the sequence $(f_n(x_n))$ in \mathbb{R} converges to f(x). (To be clear, $(f_n(x_n))$ is the sequence of numbers whose *n*-th term is what you get when you evaluate f_n at x_n .) Hint:

$$|f_n(x_n) - f(x)| = |f_n(x_n) - f(x_n) + f(x_n) - f(x)|$$

3. (10 points) Show that the following series converges uniformly on any compact subset of \mathbb{R} .

$$\sum_{n=1}^{\infty} \frac{e^x}{n} \sin\left(\frac{x}{n}\right)$$

4. (10 points) Show that the following subset S of \mathbb{R}^3 is closed in \mathbb{R}^3 with respect to the Euclidean metric.

$$S = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + xy + \sin(xyz) = 1 \}$$

5. (10 points) Suppose (X, d) is a metric space and that K and L are compact subsets of X. Show that the union $K \cup L$ is compact as well.

6. (10 points) Suppose (X, d_X) and (Y, d_Y) are metric spaces and that $f, g : X \to Y$ are both continuous functions. If A is a dense subset of X such that

$$f(a) = g(a)$$
 for all $a \in A$,

show that f(x) = g(x) for all $x \in X$. (This says that continuous functions which agree on a dense set must be the same.)

7. (10 points) Recall that C[a, b] denotes the space of continuous functions $[a, b] \to \mathbb{R}$ equipped with the sup metric. Define $T: C[0, 5] \to C[0, 2]$ by

$$(Tf)(x) = 3 + \int_0^{x^2+1} (f(t) + 2e^{\cos t}) dt.$$

(To be clear, T sends a function $f \in C[0,5]$ to the function $Tf \in C[0,2]$ whose value at x is the given expression.) Show that T is continuous. Hint: Figure out how to relate d(Tf,Tg) and d(f,g).