Math 320-2: Final Exam
 Northwestern University, Winter 2016

Name: \qquad

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A convergent series $\sum a_{n}$ of numbers such that $\sum a_{n}^{2}$ diverges.
(b) A sequence of functions on \mathbb{R} which converges uniformly on $\left[0, \frac{1}{2}\right]$ but not on $[0,1]$.
(c) A metric on \mathbb{R} relative to which \mathbb{Q} is bounded.
(d) Two connected subsets A, B of \mathbb{R}^{2} such that $A \cap B$ is disconnected.
(e) A nonempty compact subset of \mathbb{Q} with respect to the Euclidean metric.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose $\left(f_{n}\right)$ is a sequence of continuous functions on \mathbb{R} which converges uniformly to a function f. If $\left(x_{n}\right)$ is a sequence in \mathbb{R} which converges to x, show that the sequence $\left(f_{n}\left(x_{n}\right)\right)$ in \mathbb{R} converges to $f(x)$. (To be clear, $\left(f_{n}\left(x_{n}\right)\right)$ is the sequence of numbers whose n-th term is what you get when you evaluate f_{n} at x_{n}.) Hint:

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right|=\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)+f\left(x_{n}\right)-f(x)\right|
$$

3. (10 points) Show that the following series converges uniformly on any compact subset of \mathbb{R}.

$$
\sum_{n=1}^{\infty} \frac{e^{x}}{n} \sin \left(\frac{x}{n}\right)
$$

4. (10 points) Show that the following subset S of \mathbb{R}^{3} is closed in \mathbb{R}^{3} with respect to the Euclidean metric.

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+x y+\sin (x y z)=1\right\}
$$

5. (10 points) Suppose (X, d) is a metric space and that K and L are compact subsets of X. Show that the union $K \cup L$ is compact as well.
6. (10 points) Suppose $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces and that $f, g: X \rightarrow Y$ are both continuous functions. If A is a dense subset of X such that

$$
f(a)=g(a) \text { for all } a \in A,
$$

show that $f(x)=g(x)$ for all $x \in X$. (This says that continuous functions which agree on a dense set must be the same.)
7. (10 points) Recall that $C[a, b]$ denotes the space of continuous functions $[a, b] \rightarrow \mathbb{R}$ equipped with the sup metric. Define $T: C[0,5] \rightarrow C[0,2]$ by

$$
(T f)(x)=3+\int_{0}^{x^{2}+1}\left(f(t)+2 e^{\cos t}\right) d t
$$

(To be clear, T sends a function $f \in C[0,5]$ to the function $T f \in C[0,2]$ whose value at x is the given expression.) Show that T is continuous. Hint: Figure out how to relate $d(T f, T g)$ and $d(f, g)$.

