Math 320-1: Midterm 1 Northwestern University, Fall 2014

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A subset of \mathbb{Q} with an irrational infimum and no supremum.
 - (b) A strictly decreasing sequence which converges to π .

(c) A Cauchy sequence (x_n) of nonzero numbers such that the sequence $\left(\frac{1}{x_n}\right)$ is not Cauchy. (d) A nonconstant convergent sequence (x_n) and bounded sequence (y_n) such that (x_ny_n) does not converge.

2. (10 points) Determine the supremum of

$$A = \left\{ \frac{n-1}{2n-1} \mid n \in \mathbb{N} \right\}$$

and prove that your answer is correct.

3. (10 points) Suppose that (x_n) is a sequence which converges to -1. Show that the sequence $(\sqrt[3]{x_n})$ of cube roots also converges to -1. Hint: For any $a, b \in \mathbb{R}$, $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

4. (10 points) Show that the sequence (x_n) defined by

$$x_n = (-1)^n \left(\cos(\sin n) - \frac{2\cos n}{n} + \frac{\sin n}{n^2} \right)$$

has a convergent subsequence.

5. (10 points) Suppose that (a_n) is a sequence of positive numbers such that the sequence (x_n) defined by

$$x_n = a_1 + a_2 + \dots + a_n$$

converges. If (b_n) is a bounded sequence, show that the sequence (y_n) defined by

$$y_n = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

also converges.