Math 320-1: Midterm 1 Northwestern University, Fall 2014

Name:

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{Q} with an irrational infimum and no supremum.
(b) A strictly decreasing sequence which converges to π.
(c) A Cauchy sequence $\left(x_{n}\right)$ of nonzero numbers such that the sequence $\left(\frac{1}{x_{n}}\right)$ is not Cauchy.
(d) A nonconstant convergent sequence $\left(x_{n}\right)$ and bounded sequence $\left(y_{n}\right)$ such that $\left(x_{n} y_{n}\right)$ does not converge.
2. (10 points) Determine the supremum of

$$
A=\left\{\left.\frac{n-1}{2 n-1} \right\rvert\, n \in \mathbb{N}\right\}
$$

and prove that your answer is correct.
3. (10 points) Suppose that $\left(x_{n}\right)$ is a sequence which converges to -1 . Show that the sequence $\left(\sqrt[3]{x_{n}}\right)$ of cube roots also converges to -1 . Hint: For any $a, b \in \mathbb{R}, a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.
4. (10 points) Show that the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=(-1)^{n}\left(\cos (\sin n)-\frac{2 \cos n}{n}+\frac{\sin n}{n^{2}}\right)
$$

has a convergent subsequence.
5. (10 points) Suppose that $\left(a_{n}\right)$ is a sequence of positive numbers such that the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

converges. If $\left(b_{n}\right)$ is a bounded sequence, show that the sequence $\left(y_{n}\right)$ defined by

$$
y_{n}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

also converges.

