Math 320-1: Midterm 1 Northwestern University, Fall 2015

Name:

1. (10 points) Give an example of each of the following. You do not have to justify your answer. (a) A subset of $\mathbb{R} \backslash \mathbb{Q}$ with a rational infimum and irrational supremum.
(b) A sequence which has no convergent subsequence.
(c) A sequence $\left(x_{n}\right)$ which does not converge but for which $\left(\left|x_{n}\right|\right)$ does converge.
(d) A Cauchy sequence $\left(x_{n}\right)$ whose terms are in \mathbb{Q} which does not have a limit in \mathbb{Q}.
2. (10 points) Determine the supremum of the following set and prove that your answer is correct.

$$
\left\{\left.\frac{2 n^{3}-4 n^{2}}{n^{3}-n^{2}+1} \right\rvert\, n \in \mathbb{N}\right\}
$$

3. (10 points) Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Using the fact that

$$
x_{n} y_{n}-x y=x_{n} y_{n}-x_{n} y+x_{n} y-x y
$$

show that $x_{n} y_{n} \rightarrow x y$.
4. (10 points) Show that the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=\frac{3^{n}}{4^{n}}
$$

is monotone and bounded, and that it converges to 0 . (When showing $x_{n} \rightarrow 0$ you cannot just quote the fact that $a^{n} \rightarrow 0$ when $|a|<1$; you must prove that this is true in this particular case.) Hint: What is the relation between x_{n+1} and x_{n} ?
5. (10 points) Suppose that $\left(x_{n}\right)$ is a convergent sequence and that $\left(y_{n}\right)$ is a sequence such that

$$
\left|y_{m}-y_{n}\right| \leq \frac{4}{m+n}\left|x_{m}-x_{n}\right|^{3} \text { for all } m, n \in \mathbb{N} .
$$

Show that $\left(y_{n}\right)$ converges.

