Math 320-1: Midterm 1 Northwestern University, Fall 2019

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{R} with rational infimum and irrational supremum.
(b) A monotone sequence which does not converge.
(c) A Cauchy sequence whose terms are in the interval $(1,5)$ but which does not converge to an element of this interval.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Show that the supremum of the following set S is 3 .

$$
S=\left\{\left.\frac{3 n+1}{n+\sqrt{n}} \right\rvert\, n \in \mathbb{N} \text { and } n \geq 10\right\}
$$

3. (10 points) Suppose $\left(x_{n}\right)$ is a sequence which converges to 2 . Show, using the precise definition of convergence, that the sequence $\left(\frac{1}{x_{n}^{2}}\right)$ converges to $\frac{1}{4}$. Hint: Figure out how to bound $\left|\frac{1}{x_{n}^{2}}-\frac{1}{4}\right|$ by a constant times $\left|x_{n}-2\right|$, for large enough n.
4. (10 points) Suppose $\left(x_{n}\right)$ is a convergent sequence. Show that the sequence $\left(y_{n}\right)$ defined by

$$
y_{n}=4 x_{n}+\frac{4 \sin \left(n^{2}\right)-3+n^{2} \cos (n+1)}{4 n^{2}-n}
$$

has a convergent subsequence.
5. (10 points) Suppose $\left(x_{n}\right)$ is a sequence such that $x_{n}<5$ for all $n \geq 100$. If (x_{n}) converges to x, show that $x \leq 5$. Hint: Show that $x>5$ is not possible. (You cannot simply quote the "comparison theorem" from the book. The point is to give a proof of a special case of that theorem.)

