Math 320-1: Midterm 1 Solutions
 Northwestern University, Fall 2014

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{Q} with an irrational infimum and no supremum.
(b) A strictly decreasing sequence which converges to π.
(c) A Cauchy sequence $\left(x_{n}\right)$ of nonzero numbers such that the sequence $\left(\frac{1}{x_{n}}\right)$ is not Cauchy.
(d) A nonconstant convergent sequence $\left(x_{n}\right)$ and bounded sequence $\left(y_{n}\right)$ such that $\left(x_{n} y_{n}\right)$ does not converge.

Solution. (a) $\mathbb{Q} \cap(-\sqrt{2}, \infty)$ works since it has infimum $-\sqrt{2}$ and is unbounded above.
(b) $x_{n}=\pi+\frac{1}{n}$ works.
(c) $x_{n}=\frac{1}{n}$ works since, being convergent, it is Cauchy but $\frac{1}{x_{n}}=n$ is unbounded and hence not Cauchy.
(d) Taking $x_{n}=1+\frac{1}{n}$ and $y_{n}=(-1)^{n}$ works since $x_{n} y_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$ does not converge because the even-indexed terms converge to 1 while the odd-indexed terms converge to -1 .
2. Determine the supremum of

$$
A=\left\{\left.\frac{n-1}{2 n-1} \right\rvert\, n \in \mathbb{N}\right\}
$$

and prove that your answer is correct.
Proof. We claim that $\sup A=\frac{1}{2}$. Indeed, since $2 n-2<2 n-1$ for all $n \in \mathbb{N}$, we have

$$
\frac{2(n-1)}{2 n-1}<1, \text { so } \frac{n-1}{2 n-1}<\frac{1}{2} \text { for all } n \in \mathbb{N}
$$

so $\frac{1}{2}$ is an upper bound of A. For $\epsilon>0$, picking $N \in \mathbb{N}$ such that

$$
\frac{1}{4 N-2}<\epsilon
$$

gives

$$
\frac{1}{2}-\frac{N-1}{2 N-1}=\frac{1}{4 N-2}<\epsilon
$$

so

$$
\frac{1}{2}-\epsilon<\frac{N-1}{2 N-1}
$$

This shows that nothing smaller than $\frac{1}{2}$ is an upper bound of A, so $\frac{1}{2}$ is the least upper bound as claimed.
3. Suppose that $\left(x_{n}\right)$ is a sequence which converges to -1 . Show that the sequence $\left(\sqrt[3]{x_{n}}\right)$ of cube roots also converges to -1 . Hint: For any $a, b \in \mathbb{R}, a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.

Proof. Let $\epsilon>0$. Since $x_{n} \rightarrow-1$, there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|x_{n}+1\right|<\epsilon \text { if } n \geq N_{1}
$$

Also, there exists $N_{2} \in \mathbb{N}$ such that

$$
\left|x_{n}+1\right|<1 \text { for } n \geq N_{2}
$$

which implies that $x_{n}<0\left(\right.$ since $\left.x_{n}+1<1\right)$ for $n \geq N_{2}$. Thus for $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
\left|x_{n}+1\right|<\epsilon \text { and }\left|\sqrt[3]{x_{n}^{2}}-\sqrt[3]{x_{n}}+1\right|>1
$$

where is the second inequality is true since $\sqrt[3]{x_{n}^{2}}$ and $-\sqrt[3]{x_{n}}$ are both positive for $n \geq \max \left\{N_{1}, N_{2}\right\}$. Hence if $n \geq \max \left\{N_{1}, N_{2}\right\}$, we have

$$
\left|\sqrt[3]{x_{n}}+1\right|=\frac{\left|x_{n}+1\right|}{\left|\sqrt[3]{x_{n}^{2}}-\sqrt[3]{x_{n}}+1\right|}<\left|x_{n}+1\right|<\epsilon
$$

so $\sqrt[3]{x_{n}} \rightarrow-1$ as claimed.
4. Show that the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=(-1)^{n}\left(\cos (\sin n)-\frac{2 \cos n}{n}+\frac{\sin n}{n^{2}}\right)
$$

has a convergent subsequence.
Proof. For any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left|x_{n}\right| & =\left|\cos (\sin n)-\frac{2 \cos n}{n}+\frac{\sin n}{n^{2}}\right| \\
& \leq|\cos (\sin n)|+\left|\frac{2 \cos n}{n}\right|+\left|\frac{\sin n}{n^{2}}\right| \\
& \leq 1+2|\cos n|+|\sin n| \\
& \leq 1+2+1 \\
& =4
\end{aligned}
$$

since the absolute values of both cos and sin are bounded by 1 . Hence the sequence $\left(x_{n}\right)$ is bounded, so it has a convergent subsequence by the Bolzano-Weierstrass Theorem.
5. Suppose that $\left(a_{n}\right)$ is a sequence of positive numbers such that the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

converges. If $\left(b_{n}\right)$ is a bounded sequence, show that the sequence $\left(y_{n}\right)$ defined by

$$
y_{n}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

also converges.
Proof. Let $\epsilon>0$ and let $M>0$ be a positive bound for $\left|b_{n}\right|$, which exists since $\left(b_{n}\right)$ is bounded. Since $\left(x_{n}\right)$ converges, it is Cauchy so there exists $N \in \mathbb{N}$ such that for $k \geq 1$ we have

$$
\left|x_{n+k}-x_{n}\right|=\left|a_{n+k}+\cdots+a_{n+1}\right|<\frac{\epsilon}{M}
$$

Thus for $n \in \mathbb{N}$ and $k \geq 1$ we get:

$$
\begin{aligned}
\left|y_{n+k}-y_{n}\right| & =\left|a_{n+k} b_{n+k}+\cdots+a_{n+1} b_{n+1}\right| \\
& \leq\left|a_{n+k}\right|\left|b_{n+k}\right|+\cdots\left|a_{n+1}\right|\left|b_{n+1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq a_{n+k} M+\cdots+a_{n+1} M \\
& =\left(a_{n+k}+\cdots+a_{n+1}\right) M \\
& =\left(a_{n+k}+\cdots+a_{n+1}\right) M \\
& <\frac{\epsilon}{M} M \\
& =\epsilon
\end{aligned}
$$

where we use the fact that the a_{i} are positive to say that $\left|a_{i}\right|=a_{i}$ and then $a_{n+k}+\cdots+a_{n+1}=$ $\left|a_{n+k}+\cdots+a_{n+1}\right|$. Thus (y_{n}) is Cauchy as well, so it converges.

