Math 320-1: Midterm 1 Solutions
 Northwestern University, Fall 2019

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{R} with rational infimum and irrational supremum.
(b) A monotone sequence which does not converge.
(c) A Cauchy sequence whose terms are in the interval $(1,5)$ but which does not converge to an element of this interval.

Solution. (a) The interval $(0, \pi)$ works.
(b) The sequence $1,2,3,4, \ldots$ (defined by $x_{n}=n$) is increasing but does not converge.
(c) The sequence $x_{n}=1+\frac{1}{n}$ works. Note this converges to 1 in \mathbb{R}, but 1 is not in $(1,5)$.
2. Show that the supremum of the following set S is 3 .

$$
S=\left\{\left.\frac{3 n+1}{n+\sqrt{n}} \right\rvert\, n \in \mathbb{N} \text { and } n \geq 10\right\}
$$

Proof. Note: The $n \geq 10$ requirement in the definition of this set is leftover from a previous version of this problem, and is not actually important in this particular example.

First, for any $n \in \mathbb{N}$ we have:

$$
\frac{3 n+1}{n+\sqrt{n}} \leq \frac{3 n+3 \sqrt{n}}{n+\sqrt{n}}=3
$$

so 3 is an upper bound of S. Now let $\epsilon>0$ and pick $N \in \mathbb{N}$ such that

$$
\frac{1}{N}<\frac{\epsilon^{2}}{9}
$$

which is possible by the Archimedean Property of \mathbb{R}. Then

$$
3-\frac{3 N+1}{N+\sqrt{N}}=\frac{3 \sqrt{N}-1}{N+\sqrt{N}}<\frac{3 \sqrt{N}}{N}=\frac{3}{\sqrt{N}}<\epsilon
$$

so

$$
3-\epsilon<\frac{3 N+1}{N+\sqrt{N}} .
$$

Thus $\frac{3 N+1}{N+\sqrt{N}}$ is an element of S (simply make N larger if need be if you really want to satisfy $N \geq 10$) which is larger than $3-\epsilon$, so $3-\epsilon$ is not an upper bound of S, and hence $3=\sup S$ is the least upper bound as claimed.
3. Suppose $\left(x_{n}\right)$ is a sequence which converges to 2 . Show, using the precise definition of convergence, that the sequence $\left(\frac{1}{x_{n}^{2}}\right)$ converges to $\frac{1}{4}$. Hint: Figure out how to bound $\left|\frac{1}{x_{n}^{2}}-\frac{1}{4}\right|$ by a constant times $\left|x_{n}-2\right|$, for large enough n.

Proof. Let $\epsilon>0$. Since $x_{n} \rightarrow 2$, there exists $N \in \mathbb{N}$ such that

$$
\left|x_{n}-2\right|<\min \left\{1, \frac{4}{5} \epsilon\right\} \text { for } n \geq N
$$

In particular, $\left|x_{n}-2\right|<1$, so $x_{n} \in(2-1,2+1)=(1,3)$ for $n \geq N$. Thus 1 is a lower bound on these x_{n} and 3 is an upper bound.

Thus for $n \geq N$, we have:

$$
\left|\frac{1}{x_{n}^{2}}-\frac{1}{4}\right|=\frac{\left|x_{n}+2\right|\left|x_{n}-2\right|}{4\left|x_{n}\right|^{2}} \leq \frac{\left(\left|x_{n}\right|+2\right)\left|x_{n}-2\right|}{4\left|x_{n}\right|^{2}} \leq \frac{5\left|x_{n}-2\right|}{4}<\epsilon .
$$

To be clear, in the second inequality we used the fact that $1 \leq x_{n}$ in order to bound $\frac{1}{4\left|x_{n}\right|^{2}}$ by $\frac{1}{4}$. This shows that $\frac{1}{x_{n}^{2}} \rightarrow \frac{1}{4}$ as claimed.
4. Suppose $\left(x_{n}\right)$ is a convergent sequence. Show that the sequence $\left(y_{n}\right)$ defined by

$$
y_{n}=4 x_{n}+\frac{4 \sin \left(n^{2}\right)-3+n^{2} \cos (n+1)}{4 n^{2}-n}
$$

has a convergent subsequence.
Proof. By the Bolzano-Weierstrass Theorem, it suffices to show that $\left(y_{n}\right)$ is bounded. Since $\left(x_{n}\right)$ converges, it is bounded, say by M. Then we have:

$$
\begin{aligned}
\left|y_{n}\right| & \leq 4\left|x_{n}\right|+\frac{\left|4 \sin \left(n^{2}\right)-3+n^{2} \cos (n+1)\right|}{\left|4 n^{2}-n\right|} \\
& \leq 4 M+\frac{4\left|\sin n^{2}\right|+3+n^{2}|\cos (n+1)|}{4 n^{2}-n} \\
& \leq 4 M+\frac{4+3+n^{2}}{4 n^{2}-n} \\
& \leq 4 M+\frac{8 n^{2}}{3 n^{2}} \\
& =4 M+\frac{8}{3} .
\end{aligned}
$$

To be clear, in the second line we used the triangle inequality in the numerator of the second term, an in the fourth line we bounded $7+n^{2}$ by $7 n^{2}+n^{2}=8 n^{2}$ and $4 n^{2}-n$ from below by $4 n^{2}-n^{2}=3 n^{2}$. Since (y_{n}) is bounded, it has a convergent subsequence.
5. Suppose $\left(x_{n}\right)$ is a sequence such that $x_{n}<5$ for all $n \geq 100$. If $\left(x_{n}\right)$ converges to x, show that $x \leq 5$. Hint: Show that $x>5$ is not possible. (You cannot simply quote the "comparison theorem" from the book. The point is to give a proof of a special case of that theorem.)

Proof. By way of contradiction, suppose $x>5$. Then $x-5>0$, so since $x_{n} \rightarrow x$ there exists $N \in \mathbb{N}$ such that

$$
\left|x-x_{n}\right|<x-5 \text { for } n \geq N .
$$

This implies that $x-x_{n}<x-5$, so $5<x_{n}$ for $n \geq N$. In particular, picking $n \geq \max \{N, 100\}$ gives a term for which $x_{n}<5$ is not true, which is a contradiction. Thus $x \leq 5$.

