
Math 320-1: Midterm 1 Solutions
Northwestern University, Fall 2019

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of R with rational infimum and irrational supremum.
(b) A monotone sequence which does not converge.
(c) A Cauchy sequence whose terms are in the interval (1, 5) but which does not converge to an

element of this interval.

Solution. (a) The interval (0,π) works.
(b) The sequence 1, 2, 3, 4, . . . (defined by xn = n) is increasing but does not converge.
(c) The sequence xn = 1 + 1

n works. Note this converges to 1 in R, but 1 is not in (1, 5).

2. Show that the supremum of the following set S is 3.

S =

󰀝
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√
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󰀏󰀏󰀏󰀏 n ∈ N and n ≥ 10

󰀞

Proof. Note: The n ≥ 10 requirement in the definition of this set is leftover from a previous version
of this problem, and is not actually important in this particular example.

First, for any n ∈ N we have:
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= 3,

so 3 is an upper bound of S. Now let 󰂃 > 0 and pick N ∈ N such that
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which is possible by the Archimedean Property of R. Then
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so
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Thus 3N+1
N+

√
N

is an element of S (simply make N larger if need be if you really want to satisfy

N ≥ 10) which is larger than 3− 󰂃, so 3− 󰂃 is not an upper bound of S, and hence 3 = supS is the
least upper bound as claimed.

3. Suppose (xn) is a sequence which converges to 2. Show, using the precise definition of conver-
gence, that the sequence ( 1

x2
n
) converges to 1

4 . Hint: Figure out how to bound | 1
x2
n
− 1

4 | by a constant

times |xn − 2|, for large enough n.

Proof. Let 󰂃 > 0. Since xn → 2, there exists N ∈ N such that

|xn − 2| < min

󰀝
1,

4

5
󰂃

󰀞
for n ≥ N.



In particular, |xn − 2| < 1, so xn ∈ (2 − 1, 2 + 1) = (1, 3) for n ≥ N . Thus 1 is a lower bound on
these xn and 3 is an upper bound.

Thus for n ≥ N , we have:

󰀏󰀏󰀏󰀏
1
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4

󰀏󰀏󰀏󰀏 =
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4|xn|2
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≤ 5|xn − 2|

4
< 󰂃.

To be clear, in the second inequality we used the fact that 1 ≤ xn in order to bound 1
4|xn|2 by 1

4 .

This shows that 1
x2
n
→ 1

4 as claimed.

4. Suppose (xn) is a convergent sequence. Show that the sequence (yn) defined by

yn = 4xn +
4 sin(n2)− 3 + n2 cos(n+ 1)

4n2 − n

has a convergent subsequence.

Proof. By the Bolzano-Weierstrass Theorem, it suffices to show that (yn) is bounded. Since (xn)
converges, it is bounded, say by M . Then we have:

|yn| ≤ 4|xn|+
|4 sin(n2)− 3 + n2 cos(n+ 1)|

|4n2 − n|

≤ 4M +
4| sinn2|+ 3 + n2| cos(n+ 1)|

4n2 − n

≤ 4M +
4 + 3 + n2

4n2 − n

≤ 4M +
8n2

3n2

= 4M +
8

3
.

To be clear, in the second line we used the triangle inequality in the numerator of the second term,
an in the fourth line we bounded 7+n2 by 7n2+n2 = 8n2 and 4n2−n from below by 4n2−n2 = 3n2.
Since (yn) is bounded, it has a convergent subsequence.

5. Suppose (xn) is a sequence such that xn < 5 for all n ≥ 100. If (xn) converges to x, show that
x ≤ 5. Hint: Show that x > 5 is not possible. (You cannot simply quote the “comparison theorem”
from the book. The point is to give a proof of a special case of that theorem.)

Proof. By way of contradiction, suppose x > 5. Then x − 5 > 0, so since xn → x there exists
N ∈ N such that

|x− xn| < x− 5 for n ≥ N.

This implies that x − xn < x − 5, so 5 < xn for n ≥ N . In particular, picking n ≥ max{N, 100}
gives a term for which xn < 5 is not true, which is a contradiction. Thus x ≤ 5.
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