Math 320-3: Midterm 1 Solutions Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is not continuous at $\mathbf{0}$ but such that $f_{x}(\mathbf{0})$ and $f_{y}(\mathbf{0})$ exist.
(b) A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is differentiable at $(0,0)$ but not at $(1,1)$.
(c) A differentiable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that for $f(x, y)=(y, x), D(g \circ f)(\mathbf{0})=(10)$
(d) A single-variable function $f(x)$ such that $g(x, y)=\left(f(x) e^{y}, y e^{x y}\right)$ is invertible near $\mathbf{0}$.

Solution. (a) Define $f(x, y)$ to be 0 along the x - and y-axes and 1 otherwise. Then $f(x, 0)=0$ for all x and $f(0, y)=0$ for all y so $f_{x}(\mathbf{0})=0$ and $f_{y}(\mathbf{0})$ but $\lim _{x \rightarrow 0} f(x, x)=1 \neq f(0,0)$ so f is not continuous at $\mathbf{0}$.
(b) Define $f(x, y)$ to be $(1,1)$ at $(1,1)$ and $(0,0)$ elsewhere. Then near $(0,0)$ the function f is constant so it is differentiable at $(0,0)$, but f is not continuous at $(1,1)$ and so cannot be differentiable there.
(c) Since

$$
D(g \circ f)(\mathbf{0})=D g(f(\mathbf{0})) D f(\mathbf{0})=\left(\begin{array}{ll}
g_{x}(\mathbf{0}) & g_{y}(\mathbf{0})
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
g_{y}(\mathbf{0}) & g_{x}(\mathbf{0})
\end{array}\right),
$$

we need a function with $g_{y}(\mathbf{0})=1$ and $g_{x}(\mathbf{0})=0$. The function $g(x, y)=y$ is one such example.
(d) We have

$$
D g(x, y)=\left(\begin{array}{cc}
f^{\prime}(x) e^{y} & f(x) e^{y} \\
y^{2} e^{x y} & e^{x y}+x y e^{x y}
\end{array}\right) \text {, so } D g(\mathbf{0})=\left(\begin{array}{cc}
f^{\prime}(0) & f(0) \\
0 & 1
\end{array}\right) \text {. }
$$

The Inverse Function Theorem implies that g is invertible near $\mathbf{0}$ as long as this Jacobian matrix is invertible, so we only need a function with $f^{\prime}(0) \neq 0$. The function $f(x)=x$ is one example.
2. Determine whether or not the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{0}$.

$$
f(x, y)= \begin{cases}x+2 y+\frac{x^{2} y^{3}-x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Solution. We have $f(x, 0)=x$ for all x and $f(0, y)=2 y$ for all y, so $f_{x}(\mathbf{0})=1$ and $f_{y}(\mathbf{0})=2$. Thus $D f(\mathbf{0})$ must be (1 2). We have with $\mathbf{h}=(h, k)$:

$$
\frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-D f(\mathbf{0}) \mathbf{h}}{\|\mathbf{h}\|}=\frac{h+2 k+\frac{h^{2} k^{3}-h k^{2}}{h^{2}+k^{2}}-0-h-2 k}{\sqrt{h^{2}+k^{2}}}=\frac{h^{2} k^{3}-h k^{2}}{\left(h^{2}+k^{2}\right)^{3 / 2}} .
$$

We can convert to polar coordinates to see that the limit of this expression does not exist, or argue as follows. Along $h=k$ this becomes

$$
\frac{h^{5}-h^{3}}{\left(2 h^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{8}}\left(\frac{h^{5}-h^{3}}{|h|^{3}}\right)
$$

As $h \rightarrow 0^{+}$this gives a limit of $-\frac{1}{\sqrt{8}}$ while if $h \rightarrow 0^{-}$the limit is $\frac{1}{\sqrt{8}}$, so the limit does not exist and hence f is not differentiable at $\mathbf{0}$.
3. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is differentiable and that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies

$$
\|g(\mathbf{x})\| \leq \sqrt{\|f(\mathbf{x})\|\|\mathbf{x}\|} \text { for all } \mathbf{x} \in \mathbb{R}^{2}
$$

Assuming that $f(\mathbf{0})=\mathbf{0}$ and $D f(\mathbf{0})=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, show that g is differentiable at $\mathbf{0}$.
Proof. First, we have

$$
\|g(\mathbf{0})\| \leq \sqrt{\|f(\mathbf{0})\|\|\mathbf{0}\|}=0
$$

so $g(\mathbf{0})=\mathbf{0}$. Since f is differentiable, $f(\mathbf{0})=\mathbf{0}$, and $D f(\mathbf{0})$ is equal to the zero matrix, we have

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-D f(\mathbf{0}) \mathbf{h}}{\|\mathbf{h}\|}=\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{h})}{\|\mathbf{h}\|}=\mathbf{0} .
$$

Since

$$
\frac{\|g(\mathbf{h})\|}{\|\mathbf{h}\|} \leq \frac{\sqrt{\|f(\mathbf{h})\|\|\mathbf{h}\|}}{\|\mathbf{h}\|}=\sqrt{\frac{\|f(\mathbf{h})\|}{\|\mathbf{h}\|}}
$$

and the limit of the final expression is 0 by the continuity of the square root function, we have

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{g(\mathbf{h})-g(\mathbf{0})-\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0}
$$

by the squeeze theorem, showing that g is differentiable at $\mathbf{0}$ with $\operatorname{Dg}(\mathbf{0})=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
4. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are C^{1} and that $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{2}$ satisfy $g(\mathbf{x})=\mathbf{x}$ and $g(\mathbf{a})=\mathbf{a}$. If $\|D g(\mathbf{y})\| \leq \frac{1}{2}$ for all $\mathbf{y} \in \mathbb{R}^{2}$ and $\|D f(\mathbf{z})\| \leq 4$ for all $\mathbf{z} \in \mathbb{R}^{2}$, show that

$$
\|f(\mathbf{x})-f(\mathbf{a})\| \leq 2\|\mathbf{x}-\mathbf{a}\| .
$$

Proof. By the Mean Value Theorem we have

$$
\|f(g(\mathbf{x}))-f(g(\mathbf{a}))\| \leq M\|\mathbf{x}-\mathbf{a}\|
$$

where M is the supremum of the norms $\|D(f \circ g)(\mathbf{y})\|$. The chain rule gives $D(f \circ g)(\mathbf{y})=$ $D f(g(\mathbf{y})) D g(\mathbf{y})$, so

$$
\|D(f \circ g)(\mathbf{y})\|=\|D f(g(\mathbf{y})) D g(\mathbf{y})\| \leq\|D f(g(\mathbf{y}))\|\|D g(\mathbf{y})\| \leq 4\left(\frac{1}{2}\right)=2
$$

for any \mathbf{y}, which implies that $M \leq 2$. Thus

$$
\|f(g(\mathbf{x}))-f(g(\mathbf{a}))\| \leq M\|\mathbf{x}-\mathbf{a}\| \leq 2\|\mathbf{x}-\mathbf{a}\|
$$

and since $g(\mathbf{x})=\mathbf{x}$ and $g(\mathbf{a})=\mathbf{a}$, the left side is $\|f(\mathbf{x})-f(\mathbf{a})\|$, which gives the claim.
5. Consider the curve in \mathbb{R}^{3} consisting of the points which satisfy the equations

$$
x^{2}-x+y^{2}+z^{2}=1 \quad \text { and } \quad x y+z=1 .
$$

Show that near the point $(1,0,1)$ the curve can be described by parametric equations of the form

$$
x=x(t), y=t, z=z(t)
$$

where $x, z:(a, b) \rightarrow \mathbb{R}$ are differentiable functions on some open interval $(a, b) \subseteq \mathbb{R}$, and then compute the derivatives $x^{\prime}(0)$ and $z^{\prime}(0)$. Hint for the last part: consider the function $g:(a, b) \rightarrow \mathbb{R}^{2}$ defined by $g(t)=(x(t), z(t))$.

Solution. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F(x, y, z)=\left(x^{2}-x+y^{2}+z^{2}-1, x y+z-1\right),
$$

so that the curve in question consists of all points satisfying $F(x, y, z)=(0,0)$. Also,

$$
D F_{(x, z)}(x, y, z)=\left(\begin{array}{cc}
2 x-1 & 2 z \\
y & 1
\end{array}\right) .
$$

Since F is C^{1} and

$$
D F_{(x, z)}(1,0,1)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

is invertible, the Implicit Function Theorem implies that near $(1,0,1)$ there exists a C^{1} function $g:(a, b) \rightarrow \mathbb{R}^{2}$ on some interval $(a, b) \subseteq \mathbb{R}$ such that

$$
F(x(y), y, z(y)=(0,0)
$$

where $g(y)=(x(y), z(y))$ are the components of g. Setting $y=t$ then gives the parametric equations

$$
x=x(t), y=t, z=z(t)
$$

which are asked for.
Now, we have

$$
D g(t)=-\left[D F_{(x, z)}(x(t), t, z(t))\right]^{-1} D F_{y}(x(t), t, z(t)
$$

for all t, also by the Implicit Function Theorem. Since

$$
D F_{y}=\binom{2 y}{x}
$$

we get

$$
D g(0)=-\left[D F_{(x, z)}(1,0,1)\right]^{-1} D F_{y}(1,0,1)=-\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)\binom{0}{1}=\binom{2}{-1} .
$$

On the other hand, $D g(0)=\binom{x^{\prime}(0)}{z^{\prime}(0)}$, so $x^{\prime}(0)=2$ and $z^{\prime}(0)=-1$.

