Math 320-3: Midterm 1 Solutions Northwestern University, Spring 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f_{x}(\mathbf{0})$ exists but $f_{y}(\mathbf{0})$ does not.
(b) An open $U \subseteq \mathbb{R}^{2}$ and non-constant differentiable $f: U \rightarrow \mathbb{R}$ such that $D f(\mathbf{x})=0$ for all \mathbf{x}.
(c) A differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $u(x, y)=f(x y)$ has Jacobian $D u(x, y)=\left(\begin{array}{ll}2 x y^{2} & 2 x^{2} y\end{array}\right)$.
(d) A point (a, b) such that $f(x, y)=\left(x+y, x^{2} y^{3}\right)$ is invertible near (a, b).

Solution. (a) The function $f(x, y)=x+|y|$ works.
(b) Take U to be the union of $B_{1}(0,0)$ and $B_{1}(5,5)$, and define f to be 1 on $B_{1}(0,0)$ and 2 on $B_{1}(5,5)$. This is not constant but does have derivative zero everywhere since it is locally constant. Any valid example will have to involve a disconnected U.
(c) The chain rule gives

$$
D u(x, y)=\left(f^{\prime}(x y) y \quad f^{\prime}(x y) x\right) .
$$

Thus we need $f^{\prime}(x y)=2 x y$ in order to satisify the requirement, so $f(t)=t^{2}$ works.
(d) Since

$$
D f(x, y)=\left(\begin{array}{cc}
1 & 1 \\
2 x y^{3} & 3 x^{2} y^{2}
\end{array}\right)
$$

any point where $D f(x, y)$ is invertible, say $(1,1)$ for instance, works by the Inverse Function Theorem.
2. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined below is continuous but not differentiable at the origin.

$$
f(x, y)= \begin{cases}1-3 x^{2}+4 y+\frac{x^{3} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq(0,0) \\ 1 & (x, y)=(0,0)\end{cases}
$$

Proof. Since $|x|,|y| \leq \sqrt{x^{2}+y^{2}}$, we have

$$
\begin{aligned}
|f(x, y)-1| & =\left|-3 x^{2}+4 y+\frac{x^{3} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right| \\
& \leq 3|x|^{2}+4|y|+\frac{|x|^{3}|y|^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \leq 3{\sqrt{x^{2}+y^{2}}}^{2}+4 \sqrt{x^{2}+y^{2}}+\frac{{\sqrt{x^{2}+y^{2}}}^{5}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =8 \sqrt{x^{2}+y^{2}} .
\end{aligned}
$$

Thus for $\epsilon>0, \delta=\frac{\epsilon}{8}$ satisfies

$$
0<\|\mathbf{x}-\mathbf{0}\|<\delta \text { implies }|f(\mathbf{x})-f(\mathbf{0})|<\epsilon,
$$

so f is continuous at $\mathbf{0}$.
We have

$$
f(x, 0)=-3 x^{2} \text { for all } x \text { and } f(0, y)=4 y \text { for all } y .
$$

Thus $\frac{\partial}{\partial x}(f(x, 0))=-6 x$ exists, so $f_{x}(0,0)=0$, and $\frac{\partial}{\partial y}(f(0, y))=4$ exists, so $f_{y}(0,0)=4$. In order for f to be differential at $\mathbf{0}$, we would need

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-\left(\begin{array}{ll}
0 & 4
\end{array}\right) \mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0} .
$$

With $\mathbf{h}=(h, k)$, we get

$$
f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-\left(\begin{array}{ll}
0 & 4
\end{array}\right) \mathbf{h}=-3 h^{2}+\frac{h^{3} k^{2}}{\left(h^{2}+k^{2}\right)^{2}} .
$$

After converting to polar coordinates, we get

$$
\frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-\left(\begin{array}{ll}
0 & 4
\end{array}\right) \mathbf{h}}{\|\mathbf{h}\|}=-3 r \cos ^{2} \theta+\cos ^{3} \theta \sin ^{2} \theta .
$$

The first term here as limit 0 as $r \rightarrow 0$ by the squeeze theorem, but the second term does not have a limit as $r \rightarrow 0$ since the limit depends on which value of θ we approach the origin along. Thus

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-\left(\begin{array}{ll}
0 & 4
\end{array}\right) \mathbf{h}}{\|\mathbf{h}\|}
$$

does not exist, so f is not differentiable at $\mathbf{0}$.
3. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function and A is an $m \times n$ matrix such that

$$
\|f(\mathbf{x})-f(\mathbf{y})\|+\|A\|\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\|^{2} \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Show that f has the form $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for some $\mathbf{b} \in \mathbb{R}^{m}$. Hint: First show that $g(\mathbf{x})=f(\mathbf{x})-A \mathbf{x}$ satisfies $\|g(\mathbf{x})-g(\mathbf{y})\| \leq\|\mathbf{x}-\mathbf{y}\|^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. What property of g is equivalent to required claim about f ? Why does g have this property?

Proof. We have:

$$
\begin{aligned}
\|g(\mathbf{x})-g(\mathbf{y})\| & =\|f(\mathbf{x})-A \mathbf{x}-(f(\mathbf{y})-A \mathbf{y})\| \\
& =\|f(\mathbf{x})-f(\mathbf{y})-(A \mathbf{x}-A \mathbf{y})\| \\
& \leq\|f(\mathbf{x})-f(\mathbf{y})\|+\|A(\mathbf{x}-\mathbf{y})\| \\
& \leq\|f(\mathbf{x})-f(\mathbf{y})\|+\|A\|\|\mathbf{x}-\mathbf{y}\| \\
& =\|\mathbf{x}-\mathbf{y}\|^{2} .
\end{aligned}
$$

Thus

$$
\frac{\|g(\mathbf{x})-g(\mathbf{y})\|}{\|\mathbf{x}-\mathbf{y}\|} \leq\|\mathbf{x}-\mathbf{y}\|,
$$

so the squeeze theorem implies that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|g(\mathbf{x})-g(\mathbf{y})\|}{\|\mathbf{x}-\mathbf{y}\|}=0 .
$$

Hence

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{g(\mathbf{x})-g(\mathbf{y})-0(\mathbf{x}-\mathbf{y})}{\|\mathbf{x}-\mathbf{y}\|}=\mathbf{0}
$$

so g is differentiable everywhere with Jacobian matrix 0 everywhere. Since \mathbb{R}^{n} is connected, this implies that g is constant; say $g(\mathbf{x})=\mathbf{b}$ for some \mathbf{b} and all \mathbf{x}. Then

$$
f(\mathbf{x})-A \mathbf{x}=\mathbf{b}, \text { so } f(\mathbf{x})=A \mathbf{x}+\mathbf{b} \text { for all } \mathbf{x},
$$

and thus f has the required form.
4. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable and let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$. Show that for any $\mathbf{u} \in \mathbb{R}^{m}$, there exists $\mathbf{c} \in L(\mathbf{x} ; \mathbf{a})$ such that

$$
\mathbf{u} \cdot(f(\mathbf{x})-f(\mathbf{a}))=\mathbf{u} \cdot[D f(\mathbf{c})(\mathbf{x}-\mathbf{a})],
$$

where \cdot denotes the usual dot product: $\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Hint: Consider the single-variable function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t)=\mathbf{u} \cdot f(\mathbf{a}+t(\mathbf{x}-\mathbf{a}))$.

Proof. The function $t \mapsto \mathbf{a}+t(\mathbf{x}-\mathbf{a})$ is differentiable for all t, so $h(t)=\mathbf{u} \cdot f(\mathbf{a}+t(\mathbf{x}-\mathbf{a}))$ is as well. By the single-variable Mean Value Theorem, there exists $c \in(0,1)$ such that

$$
h(1)-h(0)=h^{\prime}(c)(1-0),
$$

which becomes

$$
\mathbf{u} \cdot f(\mathbf{x})-\mathbf{u} \cdot f(\mathbf{a})=h^{\prime}(c) .
$$

The chain rule applied to the composition of $t \mapsto a+t(\mathbf{x}-\mathbf{a})$ and $f(\mathbf{x})$ gives that the derivative of $f(\mathbf{a}+t(\mathbf{x}-\mathbf{a})$ with respect to t is

$$
D f(\mathbf{a}+t(\mathbf{x}-\mathbf{a}))(\mathbf{x}-\mathbf{a})
$$

Setting $\mathbf{c}=\mathbf{a}+c(\mathbf{x}-\mathbf{a})$, we have that $\mathbf{c} \in L(\mathbf{x} ; \mathbf{a})$ since $0<c<1$, and hence

$$
\mathbf{u} \cdot f(\mathbf{x})-\mathbf{u} \cdot f(\mathbf{a})=h^{\prime}(c)=\mathbf{u} \cdot[D f(\mathbf{c})(\mathbf{x}-\mathbf{a})]
$$

as required.
5. Let A be the set of all points (x, y, z) in \mathbb{R}^{3} satisfying

$$
x y z+\sin (x+y+z)=0 .
$$

(a) Show that there exists an open set $W \subseteq \mathbb{R}^{2}$ containing $(0,0)$ and a differentiable function $g: W \rightarrow \mathbb{R}$ such that $(x, y, g(x, y)) \in A$ for all $(x, y) \in W$.
(b) Let B denote the set of all points satisfying

$$
x^{2}+y^{4}-y+z=0 .
$$

Note that $(0,0,0)$ is in the intersection of A and B. Show that near $(0,0,0)$ this intersection is a curve given by parametric equations of the form

$$
x=x(t), y=y(t), z=t .
$$

Proof. (a) Since

$$
\frac{\partial g}{\partial z}=x y+\cos (x+y+z)
$$

is nonzero at $z=0$, the implicit function theorem implies that near $(0,0)$ we can solve for z in terms of (x, y), or more precisely that there exists an open set W containing $(0,0)$ and a C^{1} function $g: W \rightarrow \mathbb{R}$ such that $(x, y, g(x, y)) \in A$ as claimed.
(b) Let $F(x, y, z)=\left(x y z+\sin (x+y+z), x^{2}+y^{4}-y+z\right)$. Note that $F(0,0,0)=(0,0)$. We have

$$
D F_{(x, y)}=\left(\begin{array}{cc}
y z+\cos (x+y+z) & x z+\cos (x+y+z) \\
2 x & 4 y^{3}-1
\end{array}\right),
$$

so

$$
D F_{(x, y)}(0,0,0)=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) .
$$

Since $D F_{(x, y)}(0,0,0)$ is invertible, the Implicit Function Theorem implies that near $(0,0,0)$ there exists C^{1} function $x(z)$ and $y(z)$ such that

$$
F(x(z), y(z), z)=(0,0) .
$$

This says that the parametric equations

$$
x=x(t), y=y(t), z=t
$$

describe the curve where the two surfaces intersect.

