Math 320-3: Midterm 1 Solutions Northwestern University, Spring 2020

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{R} whose boundary is all of \mathbb{R}.
(b) A function $f(x, y)$ such that $f_{x}(0,0)$ does not exist but $f_{y}(0,0)$ does.
(c) A differentiable function $f(x, y)$ such that f_{x} is not continuous at $(0,0)$.
(d) A differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
D(f \circ g)(x, y)=\left[\begin{array}{ll}
4 x y+x^{2} & 2 x y+x^{2}
\end{array}\right]
$$

where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the function $g(x, y)=(2 x+y, x+y)$. (Hint: You can determine $D f(x, y)$ explicitly from the given information. Recall that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.)

Solution. (a) The boundary of $\mathbb{Q} \subseteq \mathbb{R}$ is \mathbb{R} : any interval around any real number includes both elements of \mathbb{Q} and elements of \mathbb{Q}^{c} since both the rationals and irrationals are dense in \mathbb{R}.
(b) Take the function defined by $f(0, y)=1$ for $y \neq 0$ and $f(x, y)=0$ everywhere else, including at the origin. Then the single-variable function $f(x, 0)$ equals the constant zero, so its derivative which is $f_{x}(0,0)$-exists and equals zero. But $f(0, y)$ is 1 at all $y \neq 0$ and 0 as $y=0$, so it is not continuous and hence not differentiable with respect to y, meaning $f_{y}(0,0)$ does not exist.
(c) Take the function defined by $f(x, y)=\left(x^{2}+y^{2}\right) \sin \left(1 / \sqrt{x^{2}+y^{2}}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. (This is a two-dimensional analog of $f(x)=x^{2} \sin (1 / x)$, which we used in the fall as an example of a differentiable function with discontinuous derivative.) Since

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-\left[\begin{array}{ll}
0 & 0
\end{array}\right] \mathbf{h}}{\|\mathbf{h}\|}=\lim _{(h, k) \rightarrow(0,0)} \frac{\left(h^{2}+k^{2}\right) \sin \left(1 / \sqrt{h^{2}+k^{2}}\right)}{\sqrt{h^{2}+k^{2}}}=0
$$

(bound the sine part and use the squeeze theorem), f is differentiable at $\mathbf{0}$ with $f_{x}(0,0)=0$. The value of f_{x} elsewhere is obtained using the product and chain rules: for $(x, y) \neq(0,0)$:

$$
f_{x}(x, y)=2 x \sin \left(1 / \sqrt{x^{2}+y^{2}}\right)-\left(x / \sqrt{x^{2}+y^{2}}\right) \cos \left(1 / \sqrt{x^{2}+y^{2}}\right) .
$$

When approaching along $y=0$ the factor in front of the cosine term becomes $x /|x|$, which does not have a limit as $x \rightarrow 0$, so the limit of $f_{x}(x, y)$ as $(x, y) \rightarrow(0,0)$ does not exist, and hence f_{x} is not continuous.
(d) No such example exists! I made a mistake when formulating this problem, and at some point turned $g \circ f$ into $f \circ g$ without checking to see if the problem still made sense. Alas, it doesn't. I'll answer the problem with what I thought was going to be the answer, and point out why it does not work. Everyone will get credit for this part. The function $f(x, y)=x^{2} y$ is what I thought should work. Indeed, the chain rule gives:

$$
\left[4 x y+x^{2} \quad 2 x y+x^{2}\right]=D(f \circ g)(x, y)=D f(g(x, y)) D g(x, y)=D f(g(x, y))\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

Multiplying both sides by the inverse of the matrix on the right gives

$$
\left[4 x y+x^{2} \quad 2 x y+x^{2}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]=D f(g(x, y)), \text { so } D f(g(x, y))=\left[\begin{array}{ll}
2 x y & x^{2}
\end{array}\right] .
$$

My mistake was in forgetting that this is the Jacobian matrix evaluated at $g(x, y)=(2 x+y, x+y)$, not at (x, y) ! If instead we knew that $D f(x, y)$ was equal to this matrix, then we would need $f_{x}=2 x y$ and $f_{y}=x^{2}$, so that $f(x, y)=x^{2} y$ does work.

But knowing that $D f(2 x+y, x+y)$ instead is equal to this matrix makes the problem impossible. Set $u=2 x+y, v=x+y$, so that $x=u-v, y=2 v-u$. Then the equality above turns into

$$
D f(u, v)=\left[2(u-v)(2 v-u) \quad(u-v)^{2}\right]
$$

Thus we need $f_{u}=2(u-v)(2 v-u)=-2 u^{2}+6 u v-4 v^{2}$ and $f_{v}=(u-v)^{2}=u^{2}-2 u v+v^{2}$, but no such f exists: the value for f_{u} requires that $f(u, v)$ have a $3 u^{2} v$ term in it, but this would give a $3 u^{2}$ term in f_{u}, which is not present. Whoops!
2. Let A be the region in \mathbb{R}^{2} which lies within the the square $[-5,5] \times[-5,5]$ and outside the square $[-1,1] \times[-1,1]$. Show that A is connected. (Recall $[a, b] \times[c, d]$ denotes the rectangle consisting of points (x, y) with $a \leq x \leq b$ and $c \leq y \leq d$. A proof which relies on pictures alone is not enough.)

Proof. We show that A is path-connected, which implies it is connected. Let us first show that any point in A can be connected to the upper-left corner point $(-5,5) \in A$ via a continuous path. Let $(x, y) \in A$. If $x<1$, so that (x, y) does not lie in the right-most strip of A with $1 \leq x \leq 5$, then $\gamma_{1}(t)=(-5 t+(1-t) x, y)$ for $t \in[0,1]$ gives the horizontal line segment from (x, y) to $(-5, y)$, and $\gamma_{2}(t)=(-5,5 t+(1-t) y, 0 \leq t \leq 1$ the vertical segment from $(-5, y)$ to $(-5,5)$, so that concatenating these two gives a continuous path from (x, y) to $(-5,5)$. If (x, y) lies in the rightmost strip $1 \leq x \leq 5, \gamma_{1}(t)=(x, 5 t+(1-t) y), 0 \leq t \leq 1$ and $\gamma_{2}(t)=(-5 t+(1-t) x, 5), 0 \leq t \leq 1$ respectively give the vertical segment from (x, y) to $(x, 5)$ and horizontal segment from $(x, 5)$ to $(-5,5)$, and concatenating these gives a path from (x, y) to $(-5,5)$.

Now, given any two $(x, y),(a, b) \in A$, we can take the path from (x, y) to $(-5,5)$ described above, and the path from $(-5,5)$ to (a, b) described above (or rather, the reverse of the path from (a, b) to $(-5,5))$, and concatenate these to get a path from (x, y) to (a, b). Thus A is path-connected.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
f(x, y)= \begin{cases}\left(\frac{2 x^{2} y-3 x^{4}}{x^{2}+y^{2}}, 4 x+y^{2}\right) & (x, y) \neq(0,0) \\ (0,0) & (x, y)=(0,0)\end{cases}
$$

Show that f is continuous but not differentiable at $(0,0)$.
Proof. Denote the components of f by $f=\left(f_{1}, f_{2}\right)$. Since $|x|=\sqrt{x^{2}} \leq\|(x, y)\|$ and similarly $|y| \leq\|(x, y)\|$, for $(x, y) \neq(0,0)$ we have:

$$
\left|f_{1}(x, y)\right|=\left|\frac{2 x^{2} y-3 x^{4}}{x^{2}+y^{2}}\right| \leq \frac{2|x|^{2}|y|+3|x|^{4}}{x^{2}+y^{2}} \leq \frac{2\|(x, y)\|^{3}+3\|(x, y)\|^{4}}{\|(x, y)\|^{2}}=2\|(x, y)\|+3\|(x, y)\|^{2}
$$

The right side approaches 0 as $(x, y) \rightarrow(0,0)$, so $f_{1}(x, y)$ does as well by the squeeze theorem. Also, for $(x, y) \neq(0,0)$:

$$
\left|f_{2}(x, y)\right|=\left|4 x+y^{2}\right| \leq 4|x|+|y|^{2} \leq 4\|(x, y)\|^{2}+\|(x, y)\|^{2}
$$

so $f_{2}(x, y)$ approaches 0 as $(x, y) \rightarrow(0,0)$ since the right side does. (Using polar coordinates is also fine.) Thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=(0,0)=f(0,0)$, so f is continuous at $(0,0)$.

To show that f is not differentiable at $(0,0)$, we show that the first component is not differentiable at $(0,0)$. We have

$$
f_{1}(x, 0)=-3 x^{2} \text { for } x \neq 0 \quad \text { and } \quad f_{1}(0, y)=0
$$

so $\frac{\partial f_{1}}{\partial x}(0,0)=\left.\frac{d}{d x}\right|_{x=0}-3 x^{2}=0$ and $\frac{\partial f_{1}}{\partial y}(0,0)=0$. Thus $D f_{1}(0,0)=\left[\begin{array}{ll}0 & 0\end{array}\right]$, so

$$
\frac{f_{1}(\mathbf{0}+\mathbf{h})-f_{1}(\mathbf{0})-D f_{1}(\mathbf{0}) \mathbf{h}}{\|\mathbf{h}\|}=\frac{2 h^{2} k-3 h^{4}}{\left(h^{2}+k^{2}\right)^{3 / 2}}
$$

where $\mathbf{h}=(h, k)$. In polar coordinates $h=r \cos \theta, k=r \sin \theta$, this becomes

$$
2 \cos ^{2} \theta \sin \theta-3 r \cos ^{4} \theta,
$$

so we see that the limit as $r \rightarrow 0$ (or equivalently $\mathbf{h} \rightarrow \mathbf{0}$) does not exist since the value depends on what happens to θ. Thus the limit defining differentiability of f_{1} at $(0,0)$ does not exist, so f_{1} and hence f is not differentiable at $(0,0)$.
4. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g(x, y)=x f(x, y)$. Show that g is differentiable at any $(x, y) \in \mathbb{R}^{2}$ using the definition of differentiability directly.

Proof. First, we have:

$$
\frac{\partial g}{\partial x}(x, y)=f(x, y)+x \frac{\partial f}{\partial x}(x, y) \quad \text { and } \quad \frac{\partial g}{\partial y}(x, y)=x \frac{\partial f}{\partial y}(x, y)
$$

Thus $D g(x, y)$ exists and

$$
D g(x, y)=\left[f(x, y)+x \frac{\partial f}{\partial x}(x, y) \quad x \frac{\partial f}{\partial y}(x, y)\right] .
$$

We have:

$$
\begin{aligned}
& \frac{g(\mathbf{x}+\mathbf{h})-g(\mathbf{x})-D g(\mathbf{x}) \mathbf{h}}{\|\mathbf{h}\|}= \frac{g(x+h, y+k)-g(x, y)-\left[f(x, y)+x \frac{\partial f}{\partial x}(x, y) \quad x \frac{\partial f}{\partial y}(x, y)\right]\left[\begin{array}{l}
h \\
k
\end{array}\right]}{\|(h, k)\|} \\
&= \frac{(x+h) f(x+h, y+k)-x f(x, y)-f(x, y) h-x D f(x, y)\left[\begin{array}{l}
h \\
k
\end{array}\right]}{\|(h, k)\|} \\
&= x\left(\frac{f(x+h, y+k)-f(x, y)-D f(x, y)\left[\begin{array}{c}
h \\
k
\end{array}\right]}{\|(h, k)\|}\right) \\
& \quad+\frac{h f(x+h, y+k)-f(x, y) h}{\|(h, k)\|} .
\end{aligned}
$$

Since f is differentiable at (x, y), the expression in parentheses above has limit 0 as (h, k) approaches $(0,0)$. For the second term, using $|h| \leq\|(h, k)\|$ we have:

$$
\left|\frac{h f(x+h, y+k)-f(x, y) h}{\|(h, k)\|}\right|=\frac{|h||f(x+h, y+k)-f(x, y)|}{\|(h, k)\|} \leq|f(x+h, y+k)-f(x, y)| \text {. }
$$

Since f is continuous (because it is differentiable), $f(x+h, y+k) \rightarrow f(x, y)$ as $(h, k) \rightarrow(0,0)$, so this term on the right goes to 0 and hence so does the expression on the left by the squeeze theorem. Thus both terms in the limit defining differentiability of g at (x, y) go to 0 as $\mathbf{h} \rightarrow \mathbf{0}$, which shows that g is differentiable at (x, y).
5. Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ are differentiable and satisfy

$$
F\left(x, g_{1}(x), g_{2}(x)\right)=\mathbf{0} \text { for all } x \in \mathbb{R}
$$

where $g(x)=\left(g_{1}(x), g_{2}(x)\right)$. Write the Jacobian matrix of F at a point $\left(x, g_{1}(x), g_{2}(x)\right)$ as

$$
D F\left(x, g_{1}(x), g_{2}(x)\right)=\left[\begin{array}{ll}
\mathbf{b} & A
\end{array}\right]
$$

where \mathbf{b} is the 2×1 matrix making up the first column of $D F\left(x, g_{1}(x), g_{2}(x)\right)$ and A the 2×2 matrix making up the final two columns. If A is invertible, show that

$$
D g(x)=-A^{-1} \mathbf{b}
$$

Hint: View $F\left(x, g_{1}(x), g_{2}(x)\right)$ as the result of composing the function $h(x)=\left(x, g_{1}(x), g_{2}(x)\right)$ with F. We did a similar problem as a Warm-Up when discussing the chain rule, only in that case g (or perhaps we called it f) was a function with only one component.

Proof. Define $h: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by $h(x)=\left(x, g_{1}(x), g_{2}(x)\right)$, which is differentiable since each component is differentiable. By assumption, we have

$$
F(h(x))=F\left(x, g_{1}(x), g_{2}(x)\right)=\mathbf{0} \text { for all } x \in \mathbb{R} .
$$

The composition $F \circ h$ is differentiable by the chain rule, and

$$
D(F \circ h)(x)=D F(h(x)) D h(x)=\left[\begin{array}{ll}
\mathbf{b} & A
\end{array}\right]\left[\begin{array}{c}
1 \\
g_{1}^{\prime}(x) \\
g_{2}^{\prime}(x)
\end{array}\right] .
$$

In the product on the right, the entries of \mathbf{b} are multiplied by the 1 in the vector at the end, and the entries of A are multiplied by $g_{1}^{\prime}(x)$ (first column) and $g_{2}^{\prime}(x)$ (second column). The result of this product is thus

$$
D(F \circ h)(x)=\mathbf{b}+A\left[\begin{array}{l}
g_{1}^{\prime}(x) \\
g_{2}^{\prime}(x)
\end{array}\right]=\mathbf{b}+A D g(x) .
$$

(Note $D g(x)$ is 2×1.)
On the other hand, $F \circ h$ is the constant 0 , so its Jacobian matrix should be the zero matrix. Thus

$$
\mathbf{0}=\mathbf{b}+A D g(x), \text { and thus } A D g(x)=-\mathbf{b} .
$$

Multiplying both sides on the left by A^{-1} gives $D g(x)=-A^{-1} \mathbf{b}$ as claimed.

