
Math 320-3: Midterm 1 Solutions
Northwestern University, Spring 2020

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of R whose boundary is all of R.
(b) A function f(x, y) such that fx(0, 0) does not exist but fy(0, 0) does.
(c) A differentiable function f(x, y) such that fx is not continuous at (0, 0).
(d) A differentiable function f : R2 → R such that

D(f ◦ g)(x, y) =
!
4xy + x2 2xy + x2

"

where g : R2 → R2 is the function g(x, y) = (2x + y, x + y). (Hint: You can determine Df(x, y)

explicitly from the given information. Recall that
!
a b
c d

"−1
= 1

ad−bc

!
d −b
−c a

"
.)

Solution. (a) The boundary of Q ⊆ R is R: any interval around any real number includes both
elements of Q and elements of Qc since both the rationals and irrationals are dense in R.

(b) Take the function defined by f(0, y) = 1 for y ∕= 0 and f(x, y) = 0 everywhere else, including
at the origin. Then the single-variable function f(x, 0) equals the constant zero, so its derivative—
which is fx(0, 0)—exists and equals zero. But f(0, y) is 1 at all y ∕= 0 and 0 as y = 0, so it is not
continuous and hence not differentiable with respect to y, meaning fy(0, 0) does not exist.

(c) Take the function defined by f(x, y) = (x2 + y2) sin(1/
#

x2 + y2) for (x, y) ∕= (0, 0) and
f(0, 0) = 0. (This is a two-dimensional analog of f(x) = x2 sin(1/x), which we used in the fall as
an example of a differentiable function with discontinuous derivative.) Since

lim
h→0

f(0+ h)− f(0)−
!
0 0

"
h

‖h‖ = lim
(h,k)→(0,0)

(h2 + k2) sin(1/
√
h2 + k2)√

h2 + k2
= 0

(bound the sine part and use the squeeze theorem), f is differentiable at 0 with fx(0, 0) = 0. The
value of fx elsewhere is obtained using the product and chain rules: for (x, y) ∕= (0, 0):

fx(x, y) = 2x sin(1/
#

x2 + y2)− (x/
#

x2 + y2) cos(1/
#

x2 + y2).

When approaching along y = 0 the factor in front of the cosine term becomes x/|x|, which does
not have a limit as x → 0, so the limit of fx(x, y) as (x, y) → (0, 0) does not exist, and hence fx is
not continuous.

(d) No such example exists! I made a mistake when formulating this problem, and at some point
turned g ◦ f into f ◦ g without checking to see if the problem still made sense. Alas, it doesn’t. I’ll
answer the problem with what I thought was going to be the answer, and point out why it does not
work. Everyone will get credit for this part. The function f(x, y) = x2y is what I thought should
work. Indeed, the chain rule gives:

!
4xy + x2 2xy + x2

"
= D(f ◦ g)(x, y) = Df(g(x, y))Dg(x, y) = Df(g(x, y))

$
2 1
1 1

%
.

Multiplying both sides by the inverse of the matrix on the right gives

!
4xy + x2 2xy + x2

" $ 1 −1
−1 2

%
= Df(g(x, y)), so Df(g(x, y)) =

!
2xy x2

"
.

My mistake was in forgetting that this is the Jacobian matrix evaluated at g(x, y) = (2x+y, x+y),
not at (x, y)! If instead we knew that Df(x, y) was equal to this matrix, then we would need
fx = 2xy and fy = x2, so that f(x, y) = x2y does work.



But knowing thatDf(2x+y, x+y) instead is equal to this matrix makes the problem impossible.
Set u = 2x+ y, v = x+ y, so that x = u− v, y = 2v − u. Then the equality above turns into

Df(u, v) =
!
2(u− v)(2v − u) (u− v)2

"
.

Thus we need fu = 2(u− v)(2v − u) = −2u2 + 6uv − 4v2 and fv = (u− v)2 = u2 − 2uv + v2, but
no such f exists: the value for fu requires that f(u, v) have a 3u2v term in it, but this would give
a 3u2 term in fu, which is not present. Whoops!

2. Let A be the region in R2 which lies within the the square [−5, 5]× [−5, 5] and outside the square
[−1, 1]× [−1, 1]. Show that A is connected. (Recall [a, b]× [c, d] denotes the rectangle consisting of
points (x, y) with a ≤ x ≤ b and c ≤ y ≤ d. A proof which relies on pictures alone is not enough.)

Proof. We show that A is path-connected, which implies it is connected. Let us first show that
any point in A can be connected to the upper-left corner point (−5, 5) ∈ A via a continuous path.
Let (x, y) ∈ A. If x < 1, so that (x, y) does not lie in the right-most strip of A with 1 ≤ x ≤ 5,
then γ1(t) = (−5t+(1− t)x, y) for t ∈ [0, 1] gives the horizontal line segment from (x, y) to (−5, y),
and γ2(t) = (−5, 5t + (1 − t)y, 0 ≤ t ≤ 1 the vertical segment from (−5, y) to (−5, 5), so that
concatenating these two gives a continuous path from (x, y) to (−5, 5). If (x, y) lies in the right-
most strip 1 ≤ x ≤ 5, γ1(t) = (x, 5t+ (1− t)y), 0 ≤ t ≤ 1 and γ2(t) = (−5t+ (1− t)x, 5), 0 ≤ t ≤ 1
respectively give the vertical segment from (x, y) to (x, 5) and horizontal segment from (x, 5) to
(−5, 5), and concatenating these gives a path from (x, y) to (−5, 5).

Now, given any two (x, y), (a, b) ∈ A, we can take the path from (x, y) to (−5, 5) described above,
and the path from (−5, 5) to (a, b) described above (or rather, the reverse of the path from (a, b) to
(−5, 5)), and concatenate these to get a path from (x, y) to (a, b). Thus A is path-connected.

3. Let f : R2 → R2 be the function defined by

f(x, y) =

&'
2x2y−3x4

x2+y2
, 4x+ y2

(
(x, y) ∕= (0, 0)

(0, 0) (x, y) = (0, 0).

Show that f is continuous but not differentiable at (0, 0).

Proof. Denote the components of f by f = (f1, f2). Since |x| =
√
x2 ≤ ‖(x, y)‖ and similarly

|y| ≤ ‖(x, y)‖, for (x, y) ∕= (0, 0) we have:

|f1(x, y)| =
))))
2x2y − 3x4

x2 + y2

)))) ≤
2|x|2|y|+ 3|x|4

x2 + y2
≤ 2 ‖(x, y)‖3 + 3 ‖(x, y)‖4

‖(x, y)‖2
= 2 ‖(x, y)‖+ 3 ‖(x, y)‖2 .

The right side approaches 0 as (x, y) → (0, 0), so f1(x, y) does as well by the squeeze theorem.
Also, for (x, y) ∕= (0, 0):

|f2(x, y)| = |4x+ y2| ≤ 4|x|+ |y|2 ≤ 4 ‖(x, y)‖2 + ‖(x, y)‖2 ,

so f2(x, y) approaches 0 as (x, y) → (0, 0) since the right side does. (Using polar coordinates is also
fine.) Thus lim(x,y)→(0,0) f(x, y) = (0, 0) = f(0, 0), so f is continuous at (0, 0).

To show that f is not differentiable at (0, 0), we show that the first component is not differen-
tiable at (0, 0). We have

f1(x, 0) = −3x2 for x ∕= 0 and f1(0, y) = 0,
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so ∂f1
∂x (0, 0) =

d
dx

))
x=0

− 3x2 = 0 and ∂f1
∂y (0, 0) = 0. Thus Df1(0, 0) =

!
0 0

"
, so

f1(0+ h)− f1(0)−Df1(0)h

‖h‖ =
2h2k − 3h4

(h2 + k2)3/2

where h = (h, k). In polar coordinates h = r cos θ, k = r sin θ, this becomes

2 cos2 θ sin θ − 3r cos4 θ,

so we see that the limit as r → 0 (or equivalently h → 0) does not exist since the value depends
on what happens to θ. Thus the limit defining differentiability of f1 at (0, 0) does not exist, so f1
and hence f is not differentiable at (0, 0).

4. Suppose f : R2 → R is differentiable and define g : R2 → R by g(x, y) = xf(x, y). Show that g
is differentiable at any (x, y) ∈ R2 using the definition of differentiability directly.

Proof. First, we have:

∂g

∂x
(x, y) = f(x, y) + x

∂f

∂x
(x, y) and

∂g

∂y
(x, y) = x

∂f

∂y
(x, y).

Thus Dg(x, y) exists and

Dg(x, y) =
*
f(x, y) + x∂f

∂x (x, y) x∂f
∂y (x, y)

+
.

We have:

g(x+ h)− g(x)−Dg(x)h

‖h‖ =
g(x+ h, y + k)− g(x, y)−

*
f(x, y) + x∂f

∂x (x, y) x∂f
∂y (x, y)

+ !
h
k

"

‖(h, k)‖

=
(x+ h)f(x+ h, y + k)− xf(x, y)− f(x, y)h− xDf(x, y)

!
h
k

"

‖(h, k)‖

= x

,
f(x+ h, y + k)− f(x, y)−Df(x, y)

!
h
k

"

‖(h, k)‖

-

+
hf(x+ h, y + k)− f(x, y)h

‖(h, k)‖ .

Since f is differentiable at (x, y), the expression in parentheses above has limit 0 as (h, k) approaches
(0, 0). For the second term, using |h| ≤ ‖(h, k)‖ we have:

))))
hf(x+ h, y + k)− f(x, y)h

‖(h, k)‖

)))) =
|h||f(x+ h, y + k)− f(x, y)|

‖(h, k)‖ ≤ |f(x+ h, y + k)− f(x, y)|.

Since f is continuous (because it is differentiable), f(x + h, y + k) → f(x, y) as (h, k) → (0, 0),
so this term on the right goes to 0 and hence so does the expression on the left by the squeeze
theorem. Thus both terms in the limit defining differentiability of g at (x, y) go to 0 as h → 0,
which shows that g is differentiable at (x, y).

5. Suppose F : R3 → R2 and g : R → R2 are differentiable and satisfy

F (x, g1(x), g2(x)) = 0 for all x ∈ R

3



where g(x) = (g1(x), g2(x)). Write the Jacobian matrix of F at a point (x, g1(x), g2(x)) as

DF (x, g1(x), g2(x)) =
!
b A

"

where b is the 2 × 1 matrix making up the first column of DF (x, g1(x), g2(x)) and A the 2 × 2
matrix making up the final two columns. If A is invertible, show that

Dg(x) = −A−1b.

Hint: View F (x, g1(x), g2(x)) as the result of composing the function h(x) = (x, g1(x), g2(x)) with
F . We did a similar problem as a Warm-Up when discussing the chain rule, only in that case g (or
perhaps we called it f) was a function with only one component.

Proof. Define h : R → R3 by h(x) = (x, g1(x), g2(x)), which is differentiable since each component
is differentiable. By assumption, we have

F (h(x)) = F (x, g1(x), g2(x)) = 0 for all x ∈ R.

The composition F ◦ h is differentiable by the chain rule, and

D(F ◦ h)(x) = DF (h(x))Dh(x) =
!
b A

"
.

/
1

g′1(x)
g′2(x)

0

1 .

In the product on the right, the entries of b are multiplied by the 1 in the vector at the end, and
the entries of A are multiplied by g′1(x) (first column) and g′2(x) (second column). The result of
this product is thus

D(F ◦ h)(x) = b+A

$
g′1(x)
g′2(x)

%
= b+ADg(x).

(Note Dg(x) is 2× 1.)
On the other hand, F ◦ h is the constant 0, so its Jacobian matrix should be the zero matrix.

Thus
0 = b+ADg(x), and thus ADg(x) = −b.

Multiplying both sides on the left by A−1 gives Dg(x) = −A−1b as claimed.
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