
Math 320-2: Midterm 1 Solutions
Northwestern University, Winter 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A series

∑
an of numbers which converges such that

∑
a2n does not converge.

(b) A sequence of functions on (0, 1) which converges pointwise but not uniformly.
(c) A power series centered at 1 with radius of convergence 3.
(d) A function which is bounded and analytic on R.

Solution. (a) For an = (−1)√
n

,
∑
an converges but

∑
a2n =

∑ 1
n does not.

(b) The sequence fn(x) = xn converges pointwise but not uniformly on (0, 1) to the zero.
(c) The series

∑(
x−1
3

)n
converges when

∣∣x−1
3

∣∣ < 1, so when |x− 1| < 3.
(d) Any constant function works, as do sinx, cosx, or 1

1+x2 .

2. Suppose that for each n ∈ N, fn : [−2, 2] → R is an increasing function and that the sequence
(fn) converges pointwise to the constant function f(x) = 1. Show that fn → f uniformly on [−2, 2]
as well. (Note: the assumption that each fn is increasing is important.)

Proof. (We did a similar Warm-Up in class one day.) Let ε > 0. Since fn → 1 pointwise, fn(2)→ 1
and fn(−2)→ 1. Thus there exist N1 and N2 such that

|fn(−2)− 1| < ε for n ≥ N1 and |fn(2)− 1| < ε for n ≥ N2.

Since fn is increasing for each n, we have

fn(−2) ≤ fn(x) ≤ fn(2) for all x ∈ [−2, 2],

so
fn(−2)− 1 ≤ fn(x)− 1 ≤ fn(2)− 1.

Thus for n ≥ max{N1, N2}, we get

−ε < fn(−2)− 1 ≤ fn(x)− 1 ≤ fn(2)− 1 < ε,

which implies that |fn(x)−1| < ε for n ≥ max{N1, N2} and all x ∈ [−2, 2]. Thus fn → 1 uniformly
as claimed.

3. Determine, with justification, the value of the following limit.

lim
n→∞

∫ 1

0

[
1 + sin

(
2 cos

x

n
− 2
)]

dx

You may use the fact that | sin y| ≤ |y| for all y ∈ R without proof.

Proof. For a fixed x ∈ [0, 1],

fn(x) := 1 + sin
(

2 cos
x

n
− 2
)
→ 1 + sin(2 cos 0− 2) = 1,

so fn → 1 pointwise on [0, 1]. We first show that this convergence is actually uniform. Note that
for each n, cos x

n is decreasing on the interval [0, 1], so

cos
x

n
≥ cos

1

n
and hence 0 ≤ 1− cos

x

n
≤ 1− cos

1

n
for all x ∈ [0, 1].



Let ε > 0. Since cosx is continuous, cos 1
n → cos 0 = 1 so there exists N ∈ N such that∣∣∣∣1− cos

1

n

∣∣∣∣ < ε

2
for n ≥ N.

Thus for n ≥ N we get

|fn(x)− 1| =
∣∣∣sin(2 cos

x

n
− 2
)∣∣∣ ≤ ∣∣∣2 cos

x

n
− 2
∣∣∣ = 2

∣∣∣1− cos
x

n

∣∣∣ ≤ 2

∣∣∣∣1− cos
1

n

∣∣∣∣ < 2
ε

2
= ε

for all x ∈ [0, 1], showing that fn → 1 uniformly on [0, 1].
Since the convergence is uniform, we can interchange limits and integration to get:

lim
n→∞

∫ 1

0

[
1 + sin

(
2 cos

x

n
− 2
)]

dx =

∫ 1

0

(
lim
n→∞

[
1 + sin

(
2 cos

x

n
− 2
)])

dx =

∫ 1

0
1 dx = 1,

which is the desired value.

4. Show that the series
∞∑
n=1

nex/n − 1

n3 + 1

converges uniformly on (2, 4) to a differentiable function f such that |f ′(x)| ≤ ex for all x ∈ (2, 4).
You may use the fact that

∑∞
n=1

1
n3+1

≤ 1 without proof.

Proof. (This was indeed the toughest problem.) For x ∈ (2, 4), we have∣∣∣∣∣nex/n − 1

n3 + 1

∣∣∣∣∣ ≤ nex/n

n3
=
ex/n

n2
≤ e4

n2
.

Thus since
∑ e4

n2 converges (as it is a constant multiple of the convergent series
∑ 1

n2 ), our given
series converges uniformly on (2, 4) by the Weierstrass M -test; denote the function defined by this
series by f .

Now, the term-by-term derivative of our series is

∞∑
n=1

ex/n

n3 + 1
.

To know that f is differentiable, we have to know that this term-by-term derivative series is also
uniformly convergent. We have∣∣∣∣∣ ex/nn3 + 1

∣∣∣∣∣ ≤ ex/n

n3
≤ e4

n3
for x ∈ (2, 4),

so since
∑ e4

n3 converges the Weierstrass M -test again implies that this term-by-term derivative
series converges uniformly on (2, 4). Hence f is differentiable on (2, 4) and

f ′(x) =
∞∑
n=1

ex/n

n3 + 1
.

Finally, we have

|f ′(x)| =

∣∣∣∣∣
∞∑
n=1

ex/n

n3 + 1

∣∣∣∣∣ ≤
∞∑
n=1

∣∣∣∣∣ ex/nn3 + 1

∣∣∣∣∣ ≤
∞∑
n=1

∣∣∣∣ ex

n3 + 1

∣∣∣∣ = ex
∞∑
n=1

1

n3 + 1
≤ ex

for x ∈ (2, 4) as required, where we have used the fact that
∑ 1

n3+1
≤ 1.
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5. Suppose that the series
∑∞

n=0 an(x − 1)n has radius of convergence R > 0. Find the radius of
convergence of the series

∞∑
n=1

nanx
3n.

Proof 1. The series
∑
bkx

k in question has

bk =

{
nan k = 3n

0 else,

so

|bk|1/k =

{
|nan|1/3n k = 3n

0 else.

Since the terms corresponding to k = 3n are always nonnegative, the supremums defining lim sup |bk|1/k
can only come from the k = 3n terms, so

lim sup |bk|1/k = lim sup |nan|1/3n =
(

limn1/n
)1/3 (

lim sup |an|1/n
)1/3

=
(

lim sup |an|1/n
)1/3

since n1/n → 1. Since
∑
an(x−1)n has radius convergenceR, lim sup |an|1/n = 1

R , so lim sup |bk|1/k =
1
3√R

. Thus the series in question has radius of convergence 3
√
R.

Proof 2. Since
∑
an(x−1)n has radius of convergence R, the derivative series

∑
nan(x−1)n−1 also

has radius of convergence R and thus
∑
nan(x − 1)n does as well. Making first the substitution

y = x − 1, we get that
∑
nany

n converges for |y| < R, and then making the substitution y = x3

we get that the series in question
∞∑
n=1

nanx
3n

converges when |x3| < R, so when |x| < 3
√
R. Hence the series in question has radius of convergence

3
√
R, agreeing with the first approach.
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