Math 320-2: Midterm 1 Solutions Northwestern University, Winter 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A series $\sum a_{n}$ of numbers which converges such that $\sum a_{n}^{2}$ does not converge.
(b) A sequence of functions on $(0,1)$ which converges pointwise but not uniformly.
(c) A power series centered at 1 with radius of convergence 3 .
(d) A function which is bounded and analytic on \mathbb{R}.

Solution. (a) For $a_{n}=\frac{(-1)}{\sqrt{n}}, \sum a_{n}$ converges but $\sum a_{n}^{2}=\sum \frac{1}{n}$ does not.
(b) The sequence $f_{n}(x)=x^{n}$ converges pointwise but not uniformly on $(0,1)$ to the zero.
(c) The series $\sum\left(\frac{x-1}{3}\right)^{n}$ converges when $\left|\frac{x-1}{3}\right|<1$, so when $|x-1|<3$.
(d) Any constant function works, as do $\sin x, \cos x$, or $\frac{1}{1+x^{2}}$.
2. Suppose that for each $n \in \mathbb{N}, f_{n}:[-2,2] \rightarrow \mathbb{R}$ is an increasing function and that the sequence $\left(f_{n}\right)$ converges pointwise to the constant function $f(x)=1$. Show that $f_{n} \rightarrow f$ uniformly on $[-2,2]$ as well. (Note: the assumption that each f_{n} is increasing is important.)

Proof. (We did a similar Warm-Up in class one day.) Let $\epsilon>0$. Since $f_{n} \rightarrow 1$ pointwise, $f_{n}(2) \rightarrow 1$ and $f_{n}(-2) \rightarrow 1$. Thus there exist N_{1} and N_{2} such that

$$
\left|f_{n}(-2)-1\right|<\epsilon \text { for } n \geq N_{1} \text { and }\left|f_{n}(2)-1\right|<\epsilon \text { for } n \geq N_{2}
$$

Since f_{n} is increasing for each n, we have

$$
f_{n}(-2) \leq f_{n}(x) \leq f_{n}(2) \text { for all } x \in[-2,2],
$$

so

$$
f_{n}(-2)-1 \leq f_{n}(x)-1 \leq f_{n}(2)-1 .
$$

Thus for $n \geq \max \left\{N_{1}, N_{2}\right\}$, we get

$$
-\epsilon<f_{n}(-2)-1 \leq f_{n}(x)-1 \leq f_{n}(2)-1<\epsilon,
$$

which implies that $\left|f_{n}(x)-1\right|<\epsilon$ for $n \geq \max \left\{N_{1}, N_{2}\right\}$ and all $x \in[-2,2]$. Thus $f_{n} \rightarrow 1$ uniformly as claimed.
3. Determine, with justification, the value of the following limit.

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left[1+\sin \left(2 \cos \frac{x}{n}-2\right)\right] d x
$$

You may use the fact that $|\sin y| \leq|y|$ for all $y \in \mathbb{R}$ without proof.
Proof. For a fixed $x \in[0,1]$,

$$
f_{n}(x):=1+\sin \left(2 \cos \frac{x}{n}-2\right) \rightarrow 1+\sin (2 \cos 0-2)=1,
$$

so $f_{n} \rightarrow 1$ pointwise on $[0,1]$. We first show that this convergence is actually uniform. Note that for each $n, \cos \frac{x}{n}$ is decreasing on the interval $[0,1]$, so

$$
\cos \frac{x}{n} \geq \cos \frac{1}{n} \text { and hence } 0 \leq 1-\cos \frac{x}{n} \leq 1-\cos \frac{1}{n} \text { for all } x \in[0,1] \text {. }
$$

Let $\epsilon>0$. Since $\cos x$ is continuous, $\cos \frac{1}{n} \rightarrow \cos 0=1$ so there exists $N \in \mathbb{N}$ such that

$$
\left|1-\cos \frac{1}{n}\right|<\frac{\epsilon}{2} \text { for } n \geq N
$$

Thus for $n \geq N$ we get

$$
\left|f_{n}(x)-1\right|=\left|\sin \left(2 \cos \frac{x}{n}-2\right)\right| \leq\left|2 \cos \frac{x}{n}-2\right|=2\left|1-\cos \frac{x}{n}\right| \leq 2\left|1-\cos \frac{1}{n}\right|<2 \frac{\epsilon}{2}=\epsilon
$$

for all $x \in[0,1]$, showing that $f_{n} \rightarrow 1$ uniformly on $[0,1]$.
Since the convergence is uniform, we can interchange limits and integration to get:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left[1+\sin \left(2 \cos \frac{x}{n}-2\right)\right] d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty}\left[1+\sin \left(2 \cos \frac{x}{n}-2\right)\right]\right) d x=\int_{0}^{1} 1 d x=1
$$

which is the desired value.
4. Show that the series

$$
\sum_{n=1}^{\infty} \frac{n e^{x / n}-1}{n^{3}+1}
$$

converges uniformly on $(2,4)$ to a differentiable function f such that $\left|f^{\prime}(x)\right| \leq e^{x}$ for all $x \in(2,4)$. You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1} \leq 1$ without proof.
Proof. (This was indeed the toughest problem.) For $x \in(2,4)$, we have

$$
\left|\frac{n e^{x / n}-1}{n^{3}+1}\right| \leq \frac{n e^{x / n}}{n^{3}}=\frac{e^{x / n}}{n^{2}} \leq \frac{e^{4}}{n^{2}} .
$$

Thus since $\sum \frac{e^{4}}{n^{2}}$ converges (as it is a constant multiple of the convergent series $\sum \frac{1}{n^{2}}$), our given series converges uniformly on $(2,4)$ by the Weierstrass M-test; denote the function defined by this series by f.

Now, the term-by-term derivative of our series is

$$
\sum_{n=1}^{\infty} \frac{e^{x / n}}{n^{3}+1}
$$

To know that f is differentiable, we have to know that this term-by-term derivative series is also uniformly convergent. We have

$$
\left|\frac{e^{x / n}}{n^{3}+1}\right| \leq \frac{e^{x / n}}{n^{3}} \leq \frac{e^{4}}{n^{3}} \text { for } x \in(2,4)
$$

so since $\sum \frac{e^{4}}{n^{3}}$ converges the Weierstrass M-test again implies that this term-by-term derivative series converges uniformly on $(2,4)$. Hence f is differentiable on $(2,4)$ and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{e^{x / n}}{n^{3}+1} .
$$

Finally, we have

$$
\left|f^{\prime}(x)\right|=\left|\sum_{n=1}^{\infty} \frac{e^{x / n}}{n^{3}+1}\right| \leq \sum_{n=1}^{\infty}\left|\frac{e^{x / n}}{n^{3}+1}\right| \leq \sum_{n=1}^{\infty}\left|\frac{e^{x}}{n^{3}+1}\right|=e^{x} \sum_{n=1}^{\infty} \frac{1}{n^{3}+1} \leq e^{x}
$$

for $x \in(2,4)$ as required, where we have used the fact that $\sum \frac{1}{n^{3}+1} \leq 1$.
5. Suppose that the series $\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ has radius of convergence $R>0$. Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} n a_{n} x^{3 n}
$$

Proof 1. The series $\sum b_{k} x^{k}$ in question has

$$
b_{k}= \begin{cases}n a_{n} & k=3 n \\ 0 & \text { else },\end{cases}
$$

so

$$
\left|b_{k}\right|^{1 / k}= \begin{cases}\left|n a_{n}\right|^{1 / 3 n} & k=3 n \\ 0 & \text { else. }\end{cases}
$$

Since the terms corresponding to $k=3 n$ are always nonnegative, the supremums defining lim sup $\left|b_{k}\right|^{1 / k}$ can only come from the $k=3 n$ terms, so

$$
\lim \sup \left|b_{k}\right|^{1 / k}=\lim \sup \left|n a_{n}\right|^{1 / 3 n}=\left(\lim n^{1 / n}\right)^{1 / 3}\left(\lim \sup \left|a_{n}\right|^{1 / n}\right)^{1 / 3}=\left(\lim \sup \left|a_{n}\right|^{1 / n}\right)^{1 / 3}
$$

since $n^{1 / n} \rightarrow 1$. Since $\sum a_{n}(x-1)^{n}$ has radius convergence $R, \lim \sup \left|a_{n}\right|^{1 / n}=\frac{1}{R}$, so lim sup $\left|b_{k}\right|^{1 / k}=$ $\frac{1}{\sqrt[3]{R}}$. Thus the series in question has radius of convergence $\sqrt[3]{R}$.

Proof 2. Since $\sum a_{n}(x-1)^{n}$ has radius of convergence R, the derivative series $\sum n a_{n}(x-1)^{n-1}$ also has radius of convergence R and thus $\sum n a_{n}(x-1)^{n}$ does as well. Making first the substitution $y=x-1$, we get that $\sum n a_{n} y^{n}$ converges for $|y|<R$, and then making the substitution $y=x^{3}$ we get that the series in question

$$
\sum_{n=1}^{\infty} n a_{n} x^{3 n}
$$

converges when $\left|x^{3}\right|<R$, so when $|x|<\sqrt[3]{R}$. Hence the series in question has radius of convergence $\sqrt[3]{R}$, agreeing with the first approach.

