
Math 320-2: Midterm 1 Solutions
Northwestern University, Winter 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A sequence (an) which converges to 0 but for which

∑
an diverges.

(b) A sequence of continuous functions on [2, 3] which converges pointwise but not uniformly.
(c) A uniformly convergent series

∑
fn(x) on (−1

2 ,
1
2) such that

∑
f ′n(x) converges to 1

(1−x)2 .

(d) A power series centered at 5 with radius of convergence 1
3 .

Solution. Here are some possible example.
(a) The sequence an = 1

n works.
(b) The sequence fn(x) = (x − 2)n works. This converges pointwise to the function which is

zero on [2, 3) and 1 at x = 3, but not uniformly since each fn is continuous but the limit is not.
(c) The sequence

∑
xn works. This converges to 1

1−x uniformly on the given interval and∑
nxn−1 converges to the derivative of 1

1−x .
(d) The series

∑
3n(x−5)n works. Writing this as

∑
(3(x−5))n, this converges when 3|x−5| < 1,

so when |x− 5| < 1
3 .

2. Suppose (an) is a decreasing sequence of numbers for which
∑∞

n=1 an converges. Show that
the sequence (na2n) converges to 0. Hint: Use the fact that (an) is decreasing to bound na2n =
a2n + · · ·+ a2n︸ ︷︷ ︸

n times

.

Proof. Note: This was a Warm-Up example from my old lectures notes. We didn’t do it in class
this quarter, but you did go through it in discussion.

Since (an) is decreasing, we have

na2n = a2n + · · ·+ a2n︸ ︷︷ ︸
n times

≤ an+1 + · · ·+ a2n

for any n since each an+k is larger than or equal to a2n for 1 ≤ k ≤ n. Since the sequence (an)
converges to 0 (because the series

∑
an converges), each an must be nonnegative, so the above

inequality still holds if we take absolute values:

|na2n| = | a2n + · · ·+ a2n︸ ︷︷ ︸
n times

| ≤ |an+1 + · · ·+ a2n|.

Let ε > 0. Since
∑
an converges, the Cauchy criterion says there exists N ∈ N such that

|an+1 + · · ·+ an+k| < ε for all n ≥ N and k ≥ 0.

Hence in particular, for n ≥ N we have

|na2n| ≤ |an+1 + · · ·+ a2n| < ε,

so (na2n) converges to 0 as desired.

3. Determine the value of the following limit.

lim
n→∞

∫ 4

0

(
x2ex/n − xn

n+ 1

)
dx



Solution. We first show that the sequence

fn(x) = x2ex/n − xn

n+ 1

converges uniformly on [0, 4]. The pointwise limit is:

f(x) = x2 − x

since for a fixed x ∈ [0, 4], ex/n → e0 = 1 (because the exponential function is continuous) and
xn
n+1 → x. Let ε > 0. Since the exponential function is continuous and 4

n → 0, e4/n → 1 so there
exists N ∈ N such that

|e4/n − 1| < ε

32
for n ≥ N.

By making N larger if need be, we may also assume

1

n+ 1
<
ε

8
for n ≥ N.

Note that for any x ∈ [0, 4] and n ∈ N, ex/n ≥ e0 = 1 so∣∣∣ex/n − 1
∣∣∣ = ex/n − 1 ≤ e4/n − 1 =

∣∣∣e4/n − 1
∣∣∣ .

Thus if n ≥ N and x ∈ [0, 4], we have:

|fn(x)− f(x)| =
∣∣∣∣x2ex/n − xn

n+ 1
− x2 + x

∣∣∣∣
=

∣∣∣∣(x2ex/n − x2)− ( xn

n+ 1
− x
)∣∣∣∣

≤ |x2|
∣∣∣ex/n − 1

∣∣∣+ |x|
∣∣∣∣ n

n+ 1
− 1

∣∣∣∣
≤ 16|ex/n − 1|+ 4

(
1

n+ 1

)
≤ 16|e4/n − 1|+ 4

(
1

n+ 1

)
<
ε

2
+
ε

2
= ε.

Hence fn → f uniformly as claimed.
Thus we may exchange the limit with the integration in the expression we are asked to compute,

so:

lim
n→∞

∫ 4

0

(
x2ex/n − xn

n+ 1

)
dx =

∫ 4

0
(x2 − x) dx =

64

3
− 16

2

is the required value.

4. Suppose for each n ∈ N the function fn : R→ R is differentiable and satisfies

|fn(x)| ≤ |x|
n

and |f ′n(x)| ≤ 1 + sin2 x

n
for all x ∈ R.

Show that
∑∞

n=1 fn(x)2 converges pointwise to a differentiable function on R.

2



Proof. Given any interval [−b, b] with b > 0, for x ∈ [−b, b] we have:

|fn(x)2| ≤ |x|
2

n2
≤ b

n2
.

Since
∑ b

n2 converges, the M -test implies that
∑
fn(x)2 converges uniformly on any [−b, b]. Any

x ∈ R will be in some such interval, so uniform convergence on each [−b, b] implies pointwise
converges on R.

Given any interval [−b, b] with b > 0, for x ∈ [−b, b] we have:

|2fn(x)f ′n(x)| ≤ 2|x||1 + sin2 x|
n2

≤ 4b

n2
.

Since
∑ 4b

n2 converges, the M -test implies that∑
(fn(x)2)′ =

∑
2fn(x)f ′n(x)

converges uniformly on any [−b, b], and hence the function

f(x) =
∑

fn(x)2

is differentiable on any [−b, b]. Since any x ∈ R is contained in some such interval, this implies that
f is differentiable on all of R as claimed.

5. Determine the radius of convergence of the following series, and the explicit function to which
it converges on its interval of convergence.

∞∑
k=1

k42kx4k

Proof. Writing this series as
∞∑
k=1

k42kx4k =

∞∑
n=1

anx
n,

we have

an =

{
k42k = n

4 4n/2 if n = 4k

0 otherwise.

Thus

|an|1/n =

{
n1/n

41/n
41/2 if n = 4k

0 otherwise.

The value of lim sup |an|1/n can only come from the positive terms above. Since n1/n → 1 and
41/n → 1, we get that

lim sup |an|1/n = 41/2 = 2.

Thus the radius of convergence of the given series is 1
2 .

Since
1

1− y
=

∞∑
k=0

yk for |y| < 1,
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differentiating gives

1

(1− y)2
=
∞∑
k=1

kyk−1 for |y| < 1.

Setting y = 2x4, we have

1

(1− 16x4)2
=

∞∑
k=1

k(16x4)k−1 =

∞∑
k=1

k42k−2x4k−4 for |16x4| < 1.

Multiplying through by 16x4 gives:

16x4

(1− 16x4)2
=
∞∑
k=1

k42kx4k for |x| < 1

2
,

which is the desired explicit function.
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