Math 320-2: Midterm 1 Solutions Northwestern University, Winter 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A sequence $\left(a_{n}\right)$ which converges to 0 but for which $\sum a_{n}$ diverges.
(b) A sequence of continuous functions on $[2,3]$ which converges pointwise but not uniformly.
(c) A uniformly convergent series $\sum f_{n}(x)$ on $\left(-\frac{1}{2}, \frac{1}{2}\right)$ such that $\sum f_{n}^{\prime}(x)$ converges to $\frac{1}{(1-x)^{2}}$.
(d) A power series centered at 5 with radius of convergence $\frac{1}{3}$.

Solution. Here are some possible example.
(a) The sequence $a_{n}=\frac{1}{n}$ works.
(b) The sequence $f_{n}(x)=(x-2)^{n}$ works. This converges pointwise to the function which is zero on $[2,3)$ and 1 at $x=3$, but not uniformly since each f_{n} is continuous but the limit is not.
(c) The sequence $\sum x^{n}$ works. This converges to $\frac{1}{1-x}$ uniformly on the given interval and $\sum n x^{n-1}$ converges to the derivative of $\frac{1}{1-x}$.
(d) The series $\sum 3^{n}(x-5)^{n}$ works. Writing this as $\sum(3(x-5))^{n}$, this converges when $3|x-5|<1$, so when $|x-5|<\frac{1}{3}$.
2. Suppose $\left(a_{n}\right)$ is a decreasing sequence of numbers for which $\sum_{n=1}^{\infty} a_{n}$ converges. Show that the sequence $\left(n a_{2 n}\right)$ converges to 0 . Hint: Use the fact that $\left(a_{n}\right)$ is decreasing to bound $n a_{2 n}=$ $\underbrace{a_{2 n}+\cdots+a_{2 n}}_{n \text { times }}$.

Proof. Note: This was a Warm-Up example from my old lectures notes. We didn't do it in class this quarter, but you did go through it in discussion.

Since $\left(a_{n}\right)$ is decreasing, we have

$$
n a_{2 n}=\underbrace{a_{2 n}+\cdots+a_{2 n}}_{n \text { times }} \leq a_{n+1}+\cdots+a_{2 n}
$$

for any n since each a_{n+k} is larger than or equal to $a_{2 n}$ for $1 \leq k \leq n$. Since the sequence $\left(a_{n}\right)$ converges to 0 (because the series $\sum a_{n}$ converges), each a_{n} must be nonnegative, so the above inequality still holds if we take absolute values:

$$
\left|n a_{2 n}\right|=|\underbrace{a_{2 n}+\cdots+a_{2 n}}_{n \text { times }}| \leq\left|a_{n+1}+\cdots+a_{2 n}\right| .
$$

Let $\epsilon>0$. Since $\sum a_{n}$ converges, the Cauchy criterion says there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n+1}+\cdots+a_{n+k}\right|<\epsilon \text { for all } n \geq N \text { and } k \geq 0 .
$$

Hence in particular, for $n \geq N$ we have

$$
\left|n a_{2 n}\right| \leq\left|a_{n+1}+\cdots+a_{2 n}\right|<\epsilon,
$$

so $\left(n a_{2 n}\right)$ converges to 0 as desired.
3. Determine the value of the following limit.

$$
\lim _{n \rightarrow \infty} \int_{0}^{4}\left(x^{2} e^{x / n}-\frac{x n}{n+1}\right) d x
$$

Solution. We first show that the sequence

$$
f_{n}(x)=x^{2} e^{x / n}-\frac{x n}{n+1}
$$

converges uniformly on $[0,4]$. The pointwise limit is:

$$
f(x)=x^{2}-x
$$

since for a fixed $x \in[0,4], e^{x / n} \rightarrow e^{0}=1$ (because the exponential function is continuous) and $\frac{x n}{n+1} \rightarrow x$. Let $\epsilon>0$. Since the exponential function is continuous and $\frac{4}{n} \rightarrow 0, e^{4 / n} \rightarrow 1$ so there exists $N \in \mathbb{N}$ such that

$$
\left|e^{4 / n}-1\right|<\frac{\epsilon}{32} \text { for } n \geq N .
$$

By making N larger if need be, we may also assume

$$
\frac{1}{n+1}<\frac{\epsilon}{8} \text { for } n \geq N
$$

Note that for any $x \in[0,4]$ and $n \in \mathbb{N}, e^{x / n} \geq e^{0}=1$ so

$$
\left|e^{x / n}-1\right|=e^{x / n}-1 \leq e^{4 / n}-1=\left|e^{4 / n}-1\right|
$$

Thus if $n \geq N$ and $x \in[0,4]$, we have:

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|x^{2} e^{x / n}-\frac{x n}{n+1}-x^{2}+x\right| \\
& =\left|\left(x^{2} e^{x / n}-x^{2}\right)-\left(\frac{x n}{n+1}-x\right)\right| \\
& \leq\left|x^{2}\right|\left|e^{x / n}-1\right|+|x|\left|\frac{n}{n+1}-1\right| \\
& \leq 16\left|e^{x / n}-1\right|+4\left(\frac{1}{n+1}\right) \\
& \leq 16\left|e^{4 / n}-1\right|+4\left(\frac{1}{n+1}\right) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Hence $f_{n} \rightarrow f$ uniformly as claimed.
Thus we may exchange the limit with the integration in the expression we are asked to compute, so:

$$
\lim _{n \rightarrow \infty} \int_{0}^{4}\left(x^{2} e^{x / n}-\frac{x n}{n+1}\right) d x=\int_{0}^{4}\left(x^{2}-x\right) d x=\frac{64}{3}-\frac{16}{2}
$$

is the required value.
4. Suppose for each $n \in \mathbb{N}$ the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and satisfies

$$
\left|f_{n}(x)\right| \leq \frac{|x|}{n} \quad \text { and } \quad\left|f_{n}^{\prime}(x)\right| \leq \frac{1+\sin ^{2} x}{n} \text { for all } x \in \mathbb{R}
$$

Show that $\sum_{n=1}^{\infty} f_{n}(x)^{2}$ converges pointwise to a differentiable function on \mathbb{R}.

Proof. Given any interval $[-b, b]$ with $b>0$, for $x \in[-b, b]$ we have:

$$
\left|f_{n}(x)^{2}\right| \leq \frac{|x|^{2}}{n^{2}} \leq \frac{b}{n^{2}}
$$

Since $\sum \frac{b}{n^{2}}$ converges, the M-test implies that $\sum f_{n}(x)^{2}$ converges uniformly on any $[-b, b]$. Any $x \in \mathbb{R}$ will be in some such interval, so uniform convergence on each $[-b, b]$ implies pointwise converges on \mathbb{R}.

Given any interval $[-b, b]$ with $b>0$, for $\mathbf{x} \in[-b, b]$ we have:

$$
\left|2 f_{n}(x) f_{n}^{\prime}(x)\right| \leq \frac{2|x|\left|1+\sin ^{2} x\right|}{n^{2}} \leq \frac{4 b}{n^{2}}
$$

Since $\sum \frac{4 b}{n^{2}}$ converges, the M-test implies that

$$
\sum\left(f_{n}(x)^{2}\right)^{\prime}=\sum 2 f_{n}(x) f_{n}^{\prime}(x)
$$

converges uniformly on any $[-b, b]$, and hence the function

$$
f(x)=\sum f_{n}(x)^{2}
$$

is differentiable on any $[-b, b]$. Since any $x \in \mathbb{R}$ is contained in some such interval, this implies that f is differentiable on all of \mathbb{R} as claimed.
5. Determine the radius of convergence of the following series, and the explicit function to which it converges on its interval of convergence.

$$
\sum_{k=1}^{\infty} k 4^{2 k} x^{4 k}
$$

Proof. Writing this series as

$$
\sum_{k=1}^{\infty} k 4^{2 k} x^{4 k}=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

we have

$$
a_{n}= \begin{cases}k 4^{2 k}=\frac{n}{4} 4^{n / 2} & \text { if } n=4 k \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
\left|a_{n}\right|^{1 / n}= \begin{cases}\frac{n^{1 / n}}{4^{1 / n}} 4^{1 / 2} & \text { if } n=4 k \\ 0 & \text { otherwise }\end{cases}
$$

The value of $\limsup \left|a_{n}\right|^{1 / n}$ can only come from the positive terms above. Since $n^{1 / n} \rightarrow 1$ and $4^{1 / n} \rightarrow 1$, we get that

$$
\lim \sup \left|a_{n}\right|^{1 / n}=4^{1 / 2}=2
$$

Thus the radius of convergence of the given series is $\frac{1}{2}$.
Since

$$
\frac{1}{1-y}=\sum_{k=0}^{\infty} y^{k} \text { for }|y|<1,
$$

differentiating gives

$$
\frac{1}{(1-y)^{2}}=\sum_{k=1}^{\infty} k y^{k-1} \text { for }|y|<1
$$

Setting $y=2 x^{4}$, we have

$$
\frac{1}{\left(1-16 x^{4}\right)^{2}}=\sum_{k=1}^{\infty} k\left(16 x^{4}\right)^{k-1}=\sum_{k=1}^{\infty} k 4^{2 k-2} x^{4 k-4} \text { for }\left|16 x^{4}\right|<1 .
$$

Multiplying through by $16 x^{4}$ gives:

$$
\frac{16 x^{4}}{\left(1-16 x^{4}\right)^{2}}=\sum_{k=1}^{\infty} k 4^{2 k} x^{4 k} \text { for }|x|<\frac{1}{2},
$$

which is the desired explicit function.

