Math 320-2: Midterm 1 Solutions Northwestern University, Winter 2020

1. Give an example of each of the following. You do not have to justify your answer.
(a) A sequence $\left(a_{n}\right)$ for which $\sum a_{n}$ diverges but $\sum a_{n}^{3}$ converges.
(b) Continuous functions on $[-1,0]$ which converge pointwise to a discontinuous function.
(c) A pointwise convergent series $\sum f_{n}(x)$ on $(-1,1)$ such that $\sum f_{n}^{\prime}(x)$ converges to $\frac{1}{1-x}$.
(d) A function which is not analytic on $(2,3)$.

Solution. (a) For $a_{n}=\frac{1}{n}, \sum \frac{1}{n}$ diverges but $\frac{1}{n^{3}}$ converges.
(b) The functions $f_{n}(x)=(-x)^{n}$ are continuous and converge pointwise to the function which is 0 for $-1<x<0$ and 1 for $x=-1$.
(c) The series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ works, since the derivative series is the geometric series $\sum x^{n}$, which does converge to $\frac{1}{1-x}$.
(d) Any noncontinuous function works, since an analytic function must at the very least be analytic. (Similarly, any continuous but non-differentiable function works.) If you really want an example which is infinitely differentiable but not analytic, then the function which is $f(x)=$ $e^{-1 /(x-2.5)}$ for $x>2.5$ and $f(x)=0$ for $x \leq 2.5$ works. (This is a "shifted" version of the standard example we saw in class.)
2. Suppose $\left(b_{n}\right)$ is a decreasing sequence of positive numbers which converges to 0 . Show that the series $\sum_{n=0}^{\infty}(-1)^{n} b_{n}$ converges. Hint: How does the value of

$$
b_{n}-b_{n+1}+b_{n+2}-b_{n+3}+\cdots+(-1)^{k} b_{n+k}
$$

compare to the value of b_{n} ?
Proof. For any n, we have that

$$
b_{n}-b_{n+1}+b_{n+2}-b_{n+3}+\cdots+(-1)^{k} b_{n+k} \leq b_{n}
$$

since on the left we start subtracting away from b_{n} and never add an amount larger than what was subtracted before; i.e. we subtract away b_{n+1}, then add back on the smaller amount b_{n+2} so that $b_{n}-b_{n+1}+b_{n+2}$ is not where b_{n} was originally, and so on. (This is where we use the fact that the the b_{n} are decresaing.) Thus for $\epsilon>0$, pick N such that

$$
b_{n}<\epsilon \text { for } n \geq N
$$

which we can do since $\left(b_{n}\right)$ converges to 0 . Then for $n \geq N$ and $k \geq 0$, we have:

$$
\left|(-1)^{n} b_{n}+(-1)^{n+1} b_{n+1}+(-1)^{n+k} b_{n+k}\right|=b_{n}-b_{n+1}+\cdots+(-1)^{k} b_{n+k} \leq b_{n}<\epsilon
$$

where in the first step we factored out $\left|(-1)^{n}\right|=1$ and were left with the positive quantity $b_{n}-$ $b_{n+1}+b_{n+2}-b_{n+3}+\cdots+(-1)^{k} b_{n+k}$. This shows that $\sum(-1)^{n} b_{n}$ by the Cauchy criterion for series convergence. (Concretely, this shows that the sequence of partial sums of $\sum(-1)^{n} b_{n}$ is Cauchy.)
3. Determine, with justification, the value of ONE of the following limits:

$$
\lim _{n \rightarrow \infty} \int_{-3}^{1} x^{2} e^{x^{2} / n} d x \quad \text { or } \quad \lim _{n \rightarrow \infty} \int_{-3}^{1}\left(x^{2}+\sin ^{2}\left(\frac{x}{n}\right)\right) d x
$$

You can use any inequality you've seen in class or on homework without justification.

Proof. For the first limit, for a fixed x the sequence $\frac{x^{2}}{n}$ converges to 0 , so $e^{x^{2} / n} \rightarrow e^{0}=1$ by the continuity of the exponential function. Thus the function $x^{2} \cdot 1=x^{2}$ is the pointwise limit of the sequence $x^{2} e^{x^{2} / n}$. Now, let $\epsilon>0$ and pick N such that

$$
\left|e^{9 / n}-1\right|<\frac{\epsilon}{9} \text { for } n \geq N
$$

which exists since $e^{9 / n} \rightarrow 1$. Then for $x \in[-3,1]$ we have:

$$
\begin{aligned}
\left|x^{2} e^{x^{2} / n}-x^{2}\right| & =\left|x^{2}\right|\left|e^{x^{2} / n}-1\right| \\
& \leq 9\left|e^{9 / n}-1\right| \\
& <\epsilon,
\end{aligned}
$$

where in the second step we use the fact that the exponential function is increasing in order to say that $e^{x^{2} / n}-1<e^{9 / n}-1$ for $x \in[-3,1]$. Thus $x^{2} e^{x^{2} / n} \rightarrow x^{2}$ uniformly on $[-3,1]$, and since uniform convergence preserves integrals we get:

$$
\lim _{n \rightarrow \infty} \int_{-3}^{1} x^{2} e^{x^{2} / n} d x=\int_{-3}^{1} \lim _{n \rightarrow \infty} x^{2} e^{x^{2} / n} d x=\int_{-3}^{1} x^{2} d x=\frac{1}{3}(1+27)
$$

For the second limit, for a fixed x we have $\frac{x}{n} \rightarrow 0$, so $\sin \frac{x}{n} \rightarrow \sin 0=0$ by the continuity of sine. Thus $x^{2}+0=x^{2}$ is the pointwise limit of $x^{2}+\sin ^{2}\left(\frac{x}{n}\right)$. Let $\epsilon>0$ and pick N such that

$$
\frac{9}{n^{2}}<\epsilon \text { for } n \geq N .
$$

Then for $x \in[-3,1]$, we have:

$$
\begin{aligned}
\left|\left(x^{2}+\sin ^{2}\left(\frac{x}{n}\right)\right)-x^{2}\right| & =\left|\sin ^{2}\left(\frac{x}{n}\right)\right| \\
& \leq\left|\frac{x^{2}}{n^{2}}\right| \\
& \leq \frac{9}{n^{2}} \\
& <\epsilon,
\end{aligned}
$$

where in the second step we use the fact that $|\sin y| \leq|y|$ for all y. Thus $x^{2}+\sin ^{2}\left(\frac{x}{n}\right)$ converges uniformly to x^{2} on $[-3,1]$, and since uniform converges preserves integrals we get:

$$
\lim _{n \rightarrow \infty} \int_{-3}^{1}\left(x^{2}+\sin ^{2}\left(\frac{x}{n}\right)\right) d x=\int_{-3}^{1} \lim _{n \rightarrow \infty}\left(x^{2}+\sin ^{2}\left(\frac{x}{n}\right)\right) d x=\int_{-3}^{1} x^{2} d x=\frac{1}{3}(1+27) .
$$

4. Show that the following series converges uniformly on any interval $[-M, M]$ centered at 0 in \mathbb{R} and defines a differentiable function on all of \mathbb{R}.

$$
\sum_{n=1}^{\infty}\left(1-e^{x / n}\right)^{2}
$$

You can take it for granted that for any $x \in \mathbb{R}, 1-e^{x / n}=\frac{x}{n} e^{c}$ for some c between 0 and $\frac{x}{n}$.

Proof. For each $x \in \mathbb{R}$, we have $1-e^{x / n}=e^{c} x / n$ for some c between 0 and $\frac{x}{n}$ by the Mean Value Theorem, so

$$
\left|1-e^{x / n}\right|=\left|e^{c}\right|\left|\frac{x}{n}\right| \leq e^{|x|}\left|\frac{x}{n}\right|,
$$

where $\left|e^{c}\right| \leq e^{|x|}$ since c, between 0 and $\frac{x}{n}$, is thus also between 0 and x, and the exponential function is increasing. (Note this inequality applies even if x and hence c is negative, in which case e^{c} is already smaller than $1 \leq e^{\text {non-negative }}$.) Thus, for $x \in[-M, M]$, we have:

$$
\left|1-e^{x / n}\right|^{2} \leq e^{2|x|}\left|\frac{x}{n}\right|^{2} \leq e^{2 M} \frac{M^{2}}{n^{2}}
$$

Since $\sum \frac{1}{n^{2}}$ converges, multiplying by the constant $M^{2} e^{2 M}$ still results in a convergent series, so the Weierstrass M-test guarantees that the given series converges uniformly on $[-M, M]$.

Now, the term-by-term derivative series is

$$
\sum_{n=1}^{\infty}-\frac{2}{n}\left(1-e^{x / n}\right) e^{x / n}
$$

As above, for $x \in[-M, M]$ we have

$$
\left|-\frac{2}{n}\left(1-e^{x / n}\right) e^{x / n}\right| \leq \frac{2}{n} e^{|x|}\left|\frac{x}{n}\right|\left|e^{x / n}\right| \leq \frac{2 M e^{2 M}}{n^{2}}
$$

Since $\sum 2 M e^{2 M} / n^{2}$ converges, the M-test implies that this term-by-term derivative converges uniformly on $[-M, M]$. Thus, since the original series and its term-by-term derivative converge uniformly on $[-M, M]$, the original series is differentiable on this interval, and since these intervals cover all of \mathbb{R} as M ranges over all positive numbers, we find that the original series defined a differentiable function on all of \mathbb{R}.
5. Suppose $\sum_{n=0}^{\infty} a_{n} x^{n}$ has finite radius of convergence $R>0$. Determine the largest open interval $(-L, L)$ centered at 0 on which the following series defines a differentiable function:

$$
\sum_{n=0}^{\infty} 2^{n} a_{n}^{2} x^{5 n}
$$

Proof. The largest such interval is precisely the interval of convergence of this power series, so we must determine its radius of convergence. Writing this series as $\sum b_{k} x^{k}$, we must compute $\limsup \left|b_{k}\right|^{1 / k}$, where

$$
b_{k}= \begin{cases}2^{n} a_{n}^{2} & k=5 n \\ 0 & \text { otherwise }\end{cases}
$$

The supremums used in computing limsup $\left|b_{k}\right|^{1 / k}$ can only be affected by the positive coefficients $b_{5 n}$ since the other zero coefficients will have no effect, so

$$
\lim \sup \left|b_{k}\right|^{1 / k}=\lim \sup \left|b_{5 n}\right|^{1 / 5 n}=\lim \sup \left(2^{n} a_{n}^{2}\right)^{1 / 5 n}=2^{1 / 5} \lim \sup \left(a_{n}\right)^{2 / 5 n}
$$

Since $\sum a_{n} x^{n}$ has radius of convergence R, we have $\lim \sup \left|a_{n}\right|^{1 / n}=\frac{1}{R}$, so

$$
\lim \sup \left|a_{n}\right|^{2 / 5 n}=\left(\frac{1}{R}\right)^{2 / 5}
$$

Thus limsup $\left|b_{k}\right|^{1 / k}=2^{1 / 5} R^{-2 / 5}$, so the given series has radius of convergence $\left(R^{2} / 2\right)^{1 / 5}$, so the largest interval on which it defines a differentiable function is $\left(-\sqrt[5]{R^{2} / 2}, \sqrt[5]{R^{2} / 2}\right)$.

