
Math 320-2: Midterm 1 Solutions
Northwestern University, Winter 2020

1. Give an example of each of the following. You do not have to justify your answer.
(a) A sequence (an) for which

!
an diverges but

!
a3n converges.

(b) Continuous functions on [−1, 0] which converge pointwise to a discontinuous function.
(c) A pointwise convergent series

!
fn(x) on (−1, 1) such that

!
f ′
n(x) converges to

1
1−x .

(d) A function which is not analytic on (2, 3).

Solution. (a) For an = 1
n ,

! 1
n diverges but 1

n3 converges.
(b) The functions fn(x) = (−x)n are continuous and converge pointwise to the function which

is 0 for −1 < x < 0 and 1 for x = −1.
(c) The series

!∞
n=0

xn+1

n+1 works, since the derivative series is the geometric series
!

xn, which

does converge to 1
1−x .

(d) Any noncontinuous function works, since an analytic function must at the very least be
analytic. (Similarly, any continuous but non-differentiable function works.) If you really want
an example which is infinitely differentiable but not analytic, then the function which is f(x) =
e−1/(x−2.5) for x > 2.5 and f(x) = 0 for x ≤ 2.5 works. (This is a “shifted” version of the standard
example we saw in class.)

2. Suppose (bn) is a decreasing sequence of positive numbers which converges to 0. Show that the
series

!∞
n=0(−1)nbn converges. Hint: How does the value of

bn − bn+1 + bn+2 − bn+3 + · · ·+ (−1)kbn+k

compare to the value of bn?

Proof. For any n, we have that

bn − bn+1 + bn+2 − bn+3 + · · ·+ (−1)kbn+k ≤ bn

since on the left we start subtracting away from bn and never add an amount larger than what was
subtracted before; i.e. we subtract away bn+1, then add back on the smaller amount bn+2 so that
bn − bn+1 + bn+2 is not where bn was originally, and so on. (This is where we use the fact that the
the bn are decresaing.) Thus for ! > 0, pick N such that

bn < ! for n ≥ N,

which we can do since (bn) converges to 0. Then for n ≥ N and k ≥ 0, we have:

|(−1)nbn + (−1)n+1bn+1 + (−1)n+kbn+k| = bn − bn+1 + · · ·+ (−1)kbn+k ≤ bn < !,

where in the first step we factored out |(−1)n| = 1 and were left with the positive quantity bn −
bn+1+ bn+2− bn+3+ · · ·+(−1)kbn+k. This shows that

!
(−1)nbn by the Cauchy criterion for series

convergence. (Concretely, this shows that the sequence of partial sums of
!

(−1)nbn is Cauchy.)

3. Determine, with justification, the value of ONE of the following limits:

lim
n→∞

" 1

−3
x2ex

2/n dx or lim
n→∞

" 1

−3
(x2 + sin2(xn)) dx

You can use any inequality you’ve seen in class or on homework without justification.



Proof. For the first limit, for a fixed x the sequence x2

n converges to 0, so ex
2/n → e0 = 1 by the

continuity of the exponential function. Thus the function x2 · 1 = x2 is the pointwise limit of the
sequence x2ex

2/n. Now, let ! > 0 and pick N such that

|e9/n − 1| < !

9
for n ≥ N,

which exists since e9/n → 1. Then for x ∈ [−3, 1] we have:

|x2ex2/n − x2| = |x2||ex2/n − 1|
≤ 9|e9/n − 1|
< !,

where in the second step we use the fact that the exponential function is increasing in order to say
that ex

2/n−1 < e9/n−1 for x ∈ [−3, 1]. Thus x2ex
2/n → x2 uniformly on [−3, 1], and since uniform

convergence preserves integrals we get:

lim
n→∞

" 1

−3
x2ex

2/n dx =

" 1

−3
lim
n→∞

x2ex
2/n dx =

" 1

−3
x2 dx =

1

3
(1 + 27).

For the second limit, for a fixed x we have x
n → 0, so sin x

n → sin 0 = 0 by the continuity of
sine. Thus x2 + 0 = x2 is the pointwise limit of x2 + sin2(xn). Let ! > 0 and pick N such that

9

n2
< ! for n ≥ N.

Then for x ∈ [−3, 1], we have:

|(x2 + sin2(xn))− x2| = |sin2(xn)|

≤
####
x2

n2

####

≤ 9

n2

< !,

where in the second step we use the fact that | sin y| ≤ |y| for all y. Thus x2 + sin2(xn) converges
uniformly to x2 on [−3, 1], and since uniform converges preserves integrals we get:

lim
n→∞

" 1

−3
(x2 + sin2(xn)) dx =

" 1

−3
lim
n→∞

(x2 + sin2(xn)) dx =

" 1

−3
x2 dx =

1

3
(1 + 27).

4. Show that the following series converges uniformly on any interval [−M,M ] centered at 0 in R
and defines a differentiable function on all of R.

∞$

n=1

%
1− ex/n

&2

You can take it for granted that for any x ∈ R, 1− ex/n = x
ne

c for some c between 0 and x
n .

2



Proof. For each x ∈ R, we have 1− ex/n = ecx/n for some c between 0 and x
n by the Mean Value

Theorem, so

|1− ex/n| = |ec|
###
x

n

### ≤ e|x|
###
x

n

### ,

where |ec| ≤ e|x| since c, between 0 and x
n , is thus also between 0 and x, and the exponential

function is increasing. (Note this inequality applies even if x and hence c is negative, in which case
ec is already smaller than 1 ≤ enon-negative.) Thus, for x ∈ [−M,M ], we have:

###1− ex/n
###
2
≤ e2|x|

###
x

n

###
2
≤ e2M

M2

n2
.

Since
! 1

n2 converges, multiplying by the constant M2e2M still results in a convergent series, so
the Weierstrass M -test guarantees that the given series converges uniformly on [−M,M ].

Now, the term-by-term derivative series is

∞$

n=1

− 2

n
(1− ex/n)ex/n.

As above, for x ∈ [−M,M ] we have
####−

2

n
(1− ex/n)ex/n

#### ≤
2

n
e|x|

###
x

n

### |ex/n| ≤
2Me2M

n2
.

Since
!

2Me2M/n2 converges, the M -test implies that this term-by-term derivative converges
uniformly on [−M,M ]. Thus, since the original series and its term-by-term derivative converge
uniformly on [−M,M ], the original series is differentiable on this interval, and since these intervals
cover all of R as M ranges over all positive numbers, we find that the original series defined a
differentiable function on all of R.

5. Suppose
!∞

n=0 anx
n has finite radius of convergence R > 0. Determine the largest open interval

(−L,L) centered at 0 on which the following series defines a differentiable function:

∞$

n=0

2na2nx
5n

Proof. The largest such interval is precisely the interval of convergence of this power series, so
we must determine its radius of convergence. Writing this series as

!
bkx

k, we must compute
lim sup |bk|1/k, where

bk =

'
2na2n k = 5n

0 otherwise.

The supremums used in computing lim sup |bk|1/k can only be affected by the positive coefficients
b5n since the other zero coefficients will have no effect, so

lim sup |bk|1/k = lim sup |b5n|1/5n = lim sup(2na2n)
1/5n = 21/5 lim sup(an)

2/5n.

Since
!

anx
n has radius of convergence R, we have lim sup |an|1/n = 1

R , so

lim sup |an|2/5n =

(
1

R

)2/5

.

Thus lim sup |bk|1/k = 21/5R−2/5, so the given series has radius of convergence (R2/2)1/5, so the
largest interval on which it defines a differentiable function is (− 5

*
R2/2, 5

*
R2/2).
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