Math 320-2: Midterm 1 Solutions Northwestern University, Winter 2020

1. Give an example of each of the following. You do not have to justify your answer.

- (a) A sequence (a_n) for which $\sum a_n$ diverges but $\sum a_n^3$ converges.
- (b) Continuous functions on [-1,0] which converge pointwise to a discontinuous function.
- (c) A pointwise convergent series $\sum f_n(x)$ on (-1,1) such that $\sum f'_n(x)$ converges to $\frac{1}{1-x}$.
- (d) A function which is not analytic on (2,3).

Solution. (a) For $a_n = \frac{1}{n}$, $\sum \frac{1}{n}$ diverges but $\frac{1}{n^3}$ converges. (b) The functions $f_n(x) = (-x)^n$ are continuous and converge pointwise to the function which

(c) The series $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ works, since the derivative series is the geometric series $\sum x^n$, which does converge to $\frac{1}{1-x}$.

(d) Any noncontinuous function works, since an analytic function must at the very least be analytic. (Similarly, any continuous but non-differentiable function works.) If you really want an example which is infinitely differentiable but not analytic, then the function which is f(x) = $e^{-1/(x-2.5)}$ for x > 2.5 and f(x) = 0 for $x \le 2.5$ works. (This is a "shifted" version of the standard example we saw in class.)

2. Suppose (b_n) is a decreasing sequence of positive numbers which converges to 0. Show that the series $\sum_{n=0}^{\infty} (-1)^n b_n$ converges. Hint: How does the value of

$$b_n - b_{n+1} + b_{n+2} - b_{n+3} + \dots + (-1)^k b_{n+k}$$

compare to the value of b_n ?

Proof. For any n, we have that

$$b_n - b_{n+1} + b_{n+2} - b_{n+3} + \dots + (-1)^k b_{n+k} \le b_n$$

since on the left we start subtracting away from b_n and never add an amount larger than what was subtracted before; i.e. we subtract away b_{n+1} , then add back on the smaller amount b_{n+2} so that $b_n - b_{n+1} + b_{n+2}$ is not where b_n was originally, and so on. (This is where we use the fact that the the b_n are *decressing*.) Thus for $\epsilon > 0$, pick N such that

$$b_n < \epsilon$$
 for $n \ge N$,

which we can do since (b_n) converges to 0. Then for $n \ge N$ and $k \ge 0$, we have:

$$|(-1)^{n}b_{n} + (-1)^{n+1}b_{n+1} + (-1)^{n+k}b_{n+k}| = b_{n} - b_{n+1} + \dots + (-1)^{k}b_{n+k} \le b_{n} < \epsilon,$$

where in the first step we factored out $|(-1)^n| = 1$ and were left with the positive quantity b_n – $b_{n+1} + b_{n+2} - b_{n+3} + \dots + (-1)^k b_{n+k}$. This shows that $\sum (-1)^n b_n$ by the Cauchy criterion for series convergence. (Concretely, this shows that the sequence of partial sums of $\sum (-1)^n b_n$ is Cauchy.)

3. Determine, with justification, the value of ONE of the following limits:

$$\lim_{n \to \infty} \int_{-3}^{1} x^2 e^{x^2/n} \, dx \qquad \text{or} \qquad \lim_{n \to \infty} \int_{-3}^{1} (x^2 + \sin^2(\frac{x}{n})) \, dx$$

You can use any inequality you've seen in class or on homework without justification.

Proof. For the first limit, for a fixed x the sequence $\frac{x^2}{n}$ converges to 0, so $e^{x^2/n} \to e^0 = 1$ by the continuity of the exponential function. Thus the function $x^2 \cdot 1 = x^2$ is the pointwise limit of the sequence $x^2 e^{x^2/n}$. Now, let $\epsilon > 0$ and pick N such that

$$|e^{9/n} - 1| < \frac{\epsilon}{9} \text{ for } n \ge N,$$

which exists since $e^{9/n} \to 1$. Then for $x \in [-3, 1]$ we have:

$$\begin{aligned} |x^2 e^{x^2/n} - x^2| &= |x^2| |e^{x^2/n} - 1| \\ &\leq 9|e^{9/n} - 1| \\ &< \epsilon, \end{aligned}$$

where in the second step we use the fact that the exponential function is increasing in order to say that $e^{x^2/n} - 1 < e^{9/n} - 1$ for $x \in [-3, 1]$. Thus $x^2 e^{x^2/n} \to x^2$ uniformly on [-3, 1], and since uniform convergence preserves integrals we get:

$$\lim_{n \to \infty} \int_{-3}^{1} x^2 e^{x^2/n} \, dx = \int_{-3}^{1} \lim_{n \to \infty} x^2 e^{x^2/n} \, dx = \int_{-3}^{1} x^2 \, dx = \frac{1}{3}(1+27).$$

For the second limit, for a fixed x we have $\frac{x}{n} \to 0$, so $\sin \frac{x}{n} \to \sin 0 = 0$ by the continuity of sine. Thus $x^2 + 0 = x^2$ is the pointwise limit of $x^2 + \sin^2(\frac{x}{n})$. Let $\epsilon > 0$ and pick N such that

$$\frac{9}{n^2} < \epsilon \text{ for } n \ge N.$$

Then for $x \in [-3, 1]$, we have:

$$|(x^{2} + \sin^{2}(\frac{x}{n})) - x^{2}| = |\sin^{2}(\frac{x}{n})|$$
$$\leq \left|\frac{x^{2}}{n^{2}}\right|$$
$$\leq \frac{9}{n^{2}}$$
$$< \epsilon,$$

where in the second step we use the fact that $|\sin y| \le |y|$ for all y. Thus $x^2 + \sin^2(\frac{x}{n})$ converges uniformly to x^2 on [-3, 1], and since uniform converges preserves integrals we get:

$$\lim_{n \to \infty} \int_{-3}^{1} \left(x^2 + \sin^2(\frac{x}{n}) \right) dx = \int_{-3}^{1} \lim_{n \to \infty} \left(x^2 + \sin^2(\frac{x}{n}) \right) dx = \int_{-3}^{1} x^2 \, dx = \frac{1}{3} (1+27).$$

4. Show that the following series converges uniformly on any interval [-M, M] centered at 0 in \mathbb{R} and defines a differentiable function on all of \mathbb{R} .

$$\sum_{n=1}^{\infty} \left(1 - e^{x/n}\right)^2$$

You can take it for granted that for any $x \in \mathbb{R}$, $1 - e^{x/n} = \frac{x}{n}e^c$ for some c between 0 and $\frac{x}{n}$.

Proof. For each $x \in \mathbb{R}$, we have $1 - e^{x/n} = e^c x/n$ for some c between 0 and $\frac{x}{n}$ by the Mean Value Theorem, so

$$|1 - e^{x/n}| = |e^c| \left| \frac{x}{n} \right| \le e^{|x|} \left| \frac{x}{n} \right|$$

where $|e^c| \leq e^{|x|}$ since c, between 0 and $\frac{x}{n}$, is thus also between 0 and x, and the exponential function is increasing. (Note this inequality applies even if x and hence c is negative, in which case e^c is already smaller than $1 \leq e^{\text{non-negative}}$.) Thus, for $x \in [-M, M]$, we have:

$$\left|1 - e^{x/n}\right|^2 \le e^{2|x|} \left|\frac{x}{n}\right|^2 \le e^{2M} \frac{M^2}{n^2}$$

Since $\sum \frac{1}{n^2}$ converges, multiplying by the constant $M^2 e^{2M}$ still results in a convergent series, so the Weierstrass *M*-test guarantees that the given series converges uniformly on [-M, M].

Now, the term-by-term derivative series is

$$\sum_{n=1}^{\infty} -\frac{2}{n} (1 - e^{x/n}) e^{x/n}.$$

As above, for $x \in [-M, M]$ we have

$$\left| -\frac{2}{n} (1 - e^{x/n}) e^{x/n} \right| \le \frac{2}{n} e^{|x|} \left| \frac{x}{n} \right| |e^{x/n}| \le \frac{2M e^{2M}}{n^2}$$

Since $\sum 2Me^{2M}/n^2$ converges, the *M*-test implies that this term-by-term derivative converges uniformly on [-M, M]. Thus, since the original series and its term-by-term derivative converge uniformly on [-M, M], the original series is differentiable on this interval, and since these intervals cover all of \mathbb{R} as *M* ranges over all positive numbers, we find that the original series defined a differentiable function on all of \mathbb{R} .

5. Suppose $\sum_{n=0}^{\infty} a_n x^n$ has finite radius of convergence R > 0. Determine the largest open interval (-L, L) centered at 0 on which the following series defines a differentiable function:

$$\sum_{n=0}^{\infty} 2^n a_n^2 x^{5n}$$

Proof. The largest such interval is precisely the interval of convergence of this power series, so we must determine its radius of convergence. Writing this series as $\sum b_k x^k$, we must compute $\limsup |b_k|^{1/k}$, where

$$b_k = \begin{cases} 2^n a_n^2 & k = 5n \\ 0 & \text{otherwise} \end{cases}$$

The supremums used in computing $\limsup |b_k|^{1/k}$ can only be affected by the positive coefficients b_{5n} since the other zero coefficients will have no effect, so

$$\limsup |b_k|^{1/k} = \limsup |b_{5n}|^{1/5n} = \limsup (2^n a_n^2)^{1/5n} = 2^{1/5} \limsup (a_n)^{2/5n}.$$

Since $\sum a_n x^n$ has radius of convergence R, we have $\limsup |a_n|^{1/n} = \frac{1}{R}$, so

$$\limsup |a_n|^{2/5n} = \left(\frac{1}{R}\right)^{2/5}.$$

Thus $\limsup |b_k|^{1/k} = 2^{1/5} R^{-2/5}$, so the given series has radius of convergence $(R^2/2)^{1/5}$, so the largest interval on which it defines a differentiable function is $(-\sqrt[5]{R^2/2}, \sqrt[5]{R^2/2})$.