Math 320-3: Midterm 1
 Northwestern University, Spring 2015

Name: \qquad

1. (10 points) Give an example of each of the following. No justification is required.
(a) A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is not continuous at $\mathbf{0}$ but such that $f_{x}(\mathbf{0})$ and $f_{y}(\mathbf{0})$ exist.
(b) A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is differentiable at $(0,0)$ but not at $(1,1)$.
(c) A differentiable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that for $f(x, y)=(y, x), D(g \circ f)(\mathbf{0})=\left(\begin{array}{ll}1 & 0\end{array}\right)$
(d) A single-variable function $f(x)$ such that $g(x, y)=\left(f(x) e^{y}, y e^{x y}\right)$ is invertible near $\mathbf{0}$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Determine whether or not the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{0}$.

$$
f(x, y)= \begin{cases}x+2 y+\frac{x^{2} y^{3}-x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

3. (10 points) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is differentiable and that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies

$$
\|g(\mathbf{x})\| \leq \sqrt{\|f(\mathbf{x})\|\|\mathbf{x}\|} \text { for all } \mathbf{x} \in \mathbb{R}^{2}
$$

Assuming that $f(\mathbf{0})=\mathbf{0}$ and $\operatorname{Df}(\mathbf{0})=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, show that g is differentiable at $\mathbf{0}$.
4. (10 points) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are C^{1} and that $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{2}$ satisfy $g(\mathbf{x})=\mathbf{x}$ and $g(\mathbf{a})=\mathbf{a}$. If $\|D g(\mathbf{y})\| \leq \frac{1}{2}$ for all $\mathbf{y} \in \mathbb{R}^{2}$ and $\|D f(\mathbf{z})\| \leq 4$ for all $\mathbf{z} \in \mathbb{R}^{2}$, show that

$$
\|f(\mathbf{x})-f(\mathbf{a})\| \leq 2\|\mathbf{x}-\mathbf{a}\| .
$$

5. (10 points) Consider the curve in \mathbb{R}^{3} consisting of the points which satisfy the equations

$$
x^{2}-x+y^{2}+z^{2}=1 \quad \text { and } \quad x y+z=1 .
$$

Show that near the point $(1,0,1)$ the curve can be described by parametric equations of the form

$$
x=x(t), y=t, z=z(t)
$$

where $x, z:(a, b) \rightarrow \mathbb{R}$ are differentiable functions on some open interval $(a, b) \subseteq \mathbb{R}$, and then compute the derivatives $x^{\prime}(0)$ and $z^{\prime}(0)$. Hint for the last part: consider the function $g:(a, b) \rightarrow \mathbb{R}^{2}$ defined by $g(t)=(x(t), z(t))$.

