Math 320-3: Midterm 1 Northwestern University, Spring 2015

Name:

- 1. (10 points) Give an example of each of the following. No justification is required.
 - (a) A function $f : \mathbb{R}^2 \to \mathbb{R}$ which is not continuous at **0** but such that $f_x(\mathbf{0})$ and $f_y(\mathbf{0})$ exist. (b) A function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is differentiable at (0,0) but not at (1,1). (c) A differentiable function $g : \mathbb{R}^2 \to \mathbb{R}$ such that for f(x,y) = (y,x), $D(g \circ f)(\mathbf{0}) = (1 \ 0)$

 - (d) A single-variable function f(x) such that $g(x,y) = (f(x)e^y, ye^{xy})$ is invertible near **0**.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Determine whether or not the following function $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at **0**.

$$f(x,y) = \begin{cases} x + 2y + \frac{x^2y^3 - xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

3. (10 points) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable and that $g : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies

$$||g(\mathbf{x})|| \leq \sqrt{||f(\mathbf{x})|| ||\mathbf{x}||}$$
 for all $\mathbf{x} \in \mathbb{R}^2$.

Assuming that $f(\mathbf{0}) = \mathbf{0}$ and $Df(\mathbf{0}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, show that g is differentiable at **0**.

4. (10 points) Suppose that $f : \mathbb{R}^2 \to \mathbb{R}^2$ and $g : \mathbb{R}^2 \to \mathbb{R}^2$ are C^1 and that $\mathbf{x}, \mathbf{a} \in \mathbb{R}^2$ satisfy $g(\mathbf{x}) = \mathbf{x}$ and $g(\mathbf{a}) = \mathbf{a}$. If $\|Dg(\mathbf{y})\| \leq \frac{1}{2}$ for all $\mathbf{y} \in \mathbb{R}^2$ and $\|Df(\mathbf{z})\| \leq 4$ for all $\mathbf{z} \in \mathbb{R}^2$, show that

$$||f(\mathbf{x}) - f(\mathbf{a})|| \le 2 ||\mathbf{x} - \mathbf{a}||.$$

5. (10 points) Consider the curve in \mathbb{R}^3 consisting of the points which satisfy the equations

$$x^{2} - x + y^{2} + z^{2} = 1$$
 and $xy + z = 1$.

Show that near the point (1,0,1) the curve can be described by parametric equations of the form

$$x = x(t), y = t, z = z(t)$$

where $x, z : (a, b) \to \mathbb{R}$ are differentiable functions on some open interval $(a, b) \subseteq \mathbb{R}$, and then compute the derivatives x'(0) and z'(0). Hint for the last part: consider the function $g : (a, b) \to \mathbb{R}^2$ defined by g(t) = (x(t), z(t)).