Math 320-3: Midterm 1
 Northwestern University, Spring 2016

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f_{x}(\mathbf{0})$ exists but $f_{y}(\mathbf{0})$ does not.
(b) An open $U \subseteq \mathbb{R}^{2}$ and non-constant differentiable $f: U \rightarrow \mathbb{R}$ such that $D f(\mathbf{x})=0$ for all \mathbf{x}.
(c) A differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $u(x, y)=f(x y)$ has Jacobian $D u(x, y)=\left(\begin{array}{ll}2 x y^{2} & 2 x^{2} y\end{array}\right)$.
(d) A point (a, b) such that $f(x, y)=\left(x+y, x^{2} y^{3}\right)$ is invertible near (a, b).

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined below is continuous but not differentiable at the origin.

$$
f(x, y)= \begin{cases}1-3 x^{2}+4 y+\frac{x^{3} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq(0,0) \\ 1 & (x, y)=(0,0)\end{cases}
$$

3. (10 points) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function and A is an $m \times n$ matrix such that

$$
\|f(\mathbf{x})-f(\mathbf{y})\|+\|A\|\|\mathbf{x}-\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\|^{2} \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Show that f has the form $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for some $\mathbf{b} \in \mathbb{R}^{m}$. Hint: First show that $g(\mathbf{x})=f(\mathbf{x})-A \mathbf{x}$ satisfies $\|g(\mathbf{x})-g(\mathbf{y})\| \leq\|\mathbf{x}-\mathbf{y}\|^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. What property of g is equivalent to required claim about f ? Why does g have this property?
4. (10 points) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable and let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$. Show that for any $\mathbf{u} \in \mathbb{R}^{m}$, there exists $\mathbf{c} \in L(\mathbf{x} ; \mathbf{a})$ such that
$\mathbf{u} \cdot(f(\mathbf{x})-f(\mathbf{a}))=\mathbf{u} \cdot[D f(\mathbf{c})(\mathbf{x}-\mathbf{a})]$,
where \cdot denotes the usual dot product: $\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Hint: Consider the single-variable function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t)=\mathbf{u} \cdot f(\mathbf{a}+t(\mathbf{x}-\mathbf{a}))$.
5. (10 points) Let A be the set of all points (x, y, z) in \mathbb{R}^{3} satisfying

$$
x y z+\sin (x+y+z)=0 .
$$

(a) Show that there exists an open set $W \in \mathbb{R}^{2}$ containing $(0,0)$ and a differentiable function $g: W \rightarrow \mathbb{R}$ such that $(x, y, g(x, y)) \in A$ for all $(x, y) \in W$.
(b) Let B denote the set of all points satisfying

$$
x^{2}+y^{4}-y+z=0 .
$$

Note that $(0,0,0)$ is in the intersection of A and B. Show that near $(0,0,0)$ this intersection is a curve given by parametric equations of the form

$$
x=x(t), y=y(t), z=t .
$$

