Math 320-3: Midterm 1 Northwestern University, Spring 2020

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A subset of \mathbb{R} whose boundary is all of \mathbb{R} .
 - (b) A function f(x, y) such that $f_x(0, 0)$ does not exist but $f_y(0, 0)$ does.
 - (c) A differentiable function f(x, y) such that f_x is not continuous at (0, 0). (d) A differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$ such that

$$D(f \circ g)(x, y) = \begin{bmatrix} 4xy + x^2 & 2xy + x^2 \end{bmatrix}$$

where $g: \mathbb{R}^2 \to \mathbb{R}^2$ is the function g(x, y) = (2x + y, x + y). (Hint: You can determine Df(x, y) explicitly from the given information. Recall that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.)

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Let A be the region in \mathbb{R}^2 which lies within the square $[-5,5] \times [-5,5]$ and outside the square $[-1,1] \times [-1,1]$. Show that A is connected. (Recall $[a,b] \times [c,d]$ denotes the rectangle consisting of points (x,y) with $a \le x \le b$ and $c \le y \le d$. A proof which relies on pictures alone is not enough.)

3. (10 points) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by

$$f(x,y) = \begin{cases} \left(\frac{2x^2y - 3x^4}{x^2 + y^2}, 4x + y^2\right) & (x,y) \neq (0,0) \\ (0,0) & (x,y) = (0,0). \end{cases}$$

Show that f is continuous but not differentiable at (0,0).

4. (10 points) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable and define $g : \mathbb{R}^2 \to \mathbb{R}$ by g(x, y) = xf(x, y). Show that g is differentiable at any $(x, y) \in \mathbb{R}^2$ using the definition of differentiability directly. 5. (10 points) Suppose $F : \mathbb{R}^3 \to \mathbb{R}^2$ and $g : \mathbb{R} \to \mathbb{R}^2$ are differentiable and satisfy

$$F(x, g_1(x), g_2(x)) = \mathbf{0}$$
 for all $x \in \mathbb{R}$

where $g(x) = (g_1(x), g_2(x))$. Write the Jacobian matrix of F at a point $(x, g_1(x), g_2(x))$ as

$$DF(x,g_1(x),g_2(x)) = \begin{bmatrix} \mathbf{b} & A \end{bmatrix}$$

where **b** is the 2×1 matrix making up the first column of $DF(x, g_1(x), g_2(x))$ and A the 2×2 matrix making up the final two columns. If A is invertible, show that

$$Dg(x) = -A^{-1}\mathbf{b}.$$

Hint: View $F(x, g_1(x), g_2(x))$ as the result of composing the function $h(x) = (x, g_1(x), g_2(x))$ with F. We did a similar problem as a Warm-Up when discussing the chain rule, only in that case g (or perhaps we called it f) was a function with only one component.