Math 320-3: Midterm 1
 Northwestern University, Spring 2020

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A subset of \mathbb{R} whose boundary is all of \mathbb{R}.
(b) A function $f(x, y)$ such that $f_{x}(0,0)$ does not exist but $f_{y}(0,0)$ does.
(c) A differentiable function $f(x, y)$ such that f_{x} is not continuous at $(0,0)$.
(d) A differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
D(f \circ g)(x, y)=\left[\begin{array}{ll}
4 x y+x^{2} & 2 x y+x^{2}
\end{array}\right]
$$

where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the function $g(x, y)=(2 x+y, x+y)$. (Hint: You can determine $D f(x, y)$ explicitly from the given information. Recall that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.)

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Let A be the region in \mathbb{R}^{2} which lies within the the square $[-5,5] \times[-5,5]$ and outside the square $[-1,1] \times[-1,1]$. Show that A is connected. (Recall $[a, b] \times[c, d]$ denotes the rectangle consisting of points (x, y) with $a \leq x \leq b$ and $c \leq y \leq d$. A proof which relies on pictures alone is not enough.)
3. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
f(x, y)= \begin{cases}\left(\frac{2 x^{2} y-3 x^{4}}{x^{2}+y^{2}}, 4 x+y^{2}\right) & (x, y) \neq(0,0) \\ (0,0) & (x, y)=(0,0)\end{cases}
$$

Show that f is continuous but not differentiable at $(0,0)$.
4. (10 points) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g(x, y)=x f(x, y)$. Show that g is differentiable at any $(x, y) \in \mathbb{R}^{2}$ using the definition of differentiability directly.
5. (10 points) Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ are differentiable and satisfy

$$
F\left(x, g_{1}(x), g_{2}(x)\right)=\mathbf{0} \text { for all } x \in \mathbb{R}
$$

where $g(x)=\left(g_{1}(x), g_{2}(x)\right)$. Write the Jacobian matrix of F at a point $\left(x, g_{1}(x), g_{2}(x)\right)$ as

$$
D F\left(x, g_{1}(x), g_{2}(x)\right)=\left[\begin{array}{ll}
\mathbf{b} & A
\end{array}\right]
$$

where \mathbf{b} is the 2×1 matrix making up the first column of $D F\left(x, g_{1}(x), g_{2}(x)\right)$ and A the 2×2 matrix making up the final two columns. If A is invertible, show that

$$
D g(x)=-A^{-1} \mathbf{b}
$$

Hint: View $F\left(x, g_{1}(x), g_{2}(x)\right)$ as the result of composing the function $h(x)=\left(x, g_{1}(x), g_{2}(x)\right)$ with F. We did a similar problem as a Warm-Up when discussing the chain rule, only in that case g (or perhaps we called it f) was a function with only one component.

