Math 320-2: Midterm 1 Northwestern University, Winter 2015

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A series $\sum a_n$ of numbers which converges such that $\sum a_n^2$ does not converge. (b) A sequence of functions on (0, 1) which converges pointwise but not uniformly.

 - (c) A power series centered at 1 with radius of convergence 3.
 - (d) A function which is bounded and analytic on \mathbb{R} .

2. (10 points) Suppose that for each $n \in \mathbb{N}$, $f_n : [-2, 2] \to \mathbb{R}$ is an increasing function and that the sequence (f_n) converges pointwise to the constant function f(x) = 1. Show that $f_n \to f$ uniformly on [-2, 2] as well. (Note: the assumption that each f_n is increasing is important.)

3. (10 points) Determine, with justification, the value of the following limit.

$$\lim_{n \to \infty} \int_0^1 \left[1 + \sin\left(2\cos\frac{x}{n} - 2\right) \right] \, dx$$

You may use the fact that $|\sin y| \le |y|$ for all $y \in \mathbb{R}$ without proof.

4. (10 points) Show that the series

$$\sum_{n=1}^{\infty} \frac{ne^{x/n} - 1}{n^3 + 1}$$

converges uniformly on (2, 4) to a differentiable function f such that $|f'(x)| \le e^x$ for all $x \in (2, 4)$. You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^3+1} \le 1$ without proof. 5. (10 points) Suppose that the series $\sum_{n=0}^{\infty} a_n (x-1)^n$ has radius of convergence R > 0. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} n a_n x^{3n}.$$