## Math 320-2: Midterm 1 <br> Northwestern University, Winter 2015

Name:

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A series $\sum a_{n}$ of numbers which converges such that $\sum a_{n}^{2}$ does not converge.
(b) A sequence of functions on $(0,1)$ which converges pointwise but not uniformly.
(c) A power series centered at 1 with radius of convergence 3 .
(d) A function which is bounded and analytic on $\mathbb{R}$.
2. (10 points) Suppose that for each $n \in \mathbb{N}, f_{n}:[-2,2] \rightarrow \mathbb{R}$ is an increasing function and that the sequence $\left(f_{n}\right)$ converges pointwise to the constant function $f(x)=1$. Show that $f_{n} \rightarrow f$ uniformly on $[-2,2]$ as well. (Note: the assumption that each $f_{n}$ is increasing is important.)
3. (10 points) Determine, with justification, the value of the following limit.

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left[1+\sin \left(2 \cos \frac{x}{n}-2\right)\right] d x
$$

You may use the fact that $|\sin y| \leq|y|$ for all $y \in \mathbb{R}$ without proof.
4. (10 points) Show that the series

$$
\sum_{n=1}^{\infty} \frac{n e^{x / n}-1}{n^{3}+1}
$$

converges uniformly on $(2,4)$ to a differentiable function $f$ such that $\left|f^{\prime}(x)\right| \leq e^{x}$ for all $x \in(2,4)$. You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1} \leq 1$ without proof.
5. (10 points) Suppose that the series $\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ has radius of convergence $R>0$. Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} n a_{n} x^{3 n}
$$

