Math 320-2: Midterm 1 Northwestern University, Winter 2016

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A sequence (a_n) which converges to 0 but for which $\sum a_n$ diverges.
 - (b) A sequence of continuous functions on [2, 3] which converges pointwise but not uniformly. (c) A uniformly convergent series $\sum f_n(x)$ on $(-\frac{1}{2}, \frac{1}{2})$ such that $\sum f'_n(x)$ converges to $\frac{1}{(1-x)^2}$.

 - (d) A power series centered at 5 with radius of convergence $\frac{1}{3}$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose (a_n) is a decreasing sequence of numbers for which $\sum_{n=1}^{\infty} a_n$ converges. Show that the sequence (na_{2n}) converges to 0. Hint: Use the fact that (a_n) is decreasing to bound $na_{2n} = \underbrace{a_{2n} + \cdots + a_{2n}}_{n \text{ times}}$.

3. (10 points) Determine the value of the following limit.

$$\lim_{n \to \infty} \int_0^4 \left(x^2 e^{x/n} - \frac{xn}{n+1} \right) \, dx$$

4. (10 points) Suppose for each $n \in \mathbb{N}$ the function $f_n : \mathbb{R} \to \mathbb{R}$ is differentiable and satisfies

$$|f_n(x)| \le \frac{|x|}{n}$$
 and $|f'_n(x)| \le \frac{1 + \sin^2 x}{n}$ for all $x \in \mathbb{R}$.

Show that $\sum_{n=1}^{\infty} f_n(x)^2$ converges pointwise to a differentiable function on \mathbb{R} .

5. (10 points) Determine the radius of convergence of the following series, and the explicit function to which it converges on its interval of convergence.

$$\sum_{k=1}^{\infty} k 4^{2k} x^{4k}$$