Math 320-1: Midterm 2 Northwestern University, Fall 2015

Name: _

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A function on \mathbb{R} which is nowhere continuous.
 - (b) A function $f : \mathbb{R} \to \mathbb{R}$ which is uniformly continuous on [2, 100] but not on all of \mathbb{R} .
 - (c) A function on \mathbb{R} which is differentiable but not twice differentiable.
 - (d) A function $f : \mathbb{R} \to \mathbb{R}$ which is differentiable at 3 and nowhere else.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a function such that $\lim_{x \to 2} f(x) = L$ exists and

2 < L < 5.

Show that there exists $\delta > 0$ such that 2 < f(x) < 5 for all $x \in (2 - \delta, 2 + \delta)$ except possibly x = 2.

3. (10 points) Show that the function $f:(0,4) \to \mathbb{R}$ defined by

$$f(x) = \frac{1}{x^2}$$

is continuous at $a = \frac{1}{3}$ and that it is not uniformly continuous on (0, 4). When showing continuity at $\frac{1}{3}$ you MUST verify the ϵ - δ definition directly and cannot simply quote the fact that quotients of continuous functions are continuous whenever the denominator is nonzero. 4. (10 points) Suppose that $g : \mathbb{R} \to \mathbb{R}$ is continuously differentiable everywhere but not twice differentiable at 1. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = (x-1)g(x)$$

is twice differentiable at 1. Hint: The product rule will say right away that f is differentiable everywhere, but it won't immediately say that f is twice differentiable.

5. (10 points) Prove that $1 - \sin x \le e^x$ for all $x \ge 0$. Hint: Find a good function to which you can apply the Mean Value Theorem.