Math 320-1: Midterm 2 Northwestern University, Fall 2015

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A function on \mathbb{R} which is nowhere continuous.
(b) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is uniformly continuous on $[2,100]$ but not on all of \mathbb{R}.
(c) A function on \mathbb{R} which is differentiable but not twice differentiable.
(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable at 3 and nowhere else.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $\lim _{x \rightarrow 2} f(x)=L$ exists and

$$
2<L<5 .
$$

Show that there exists $\delta>0$ such that $2<f(x)<5$ for all $x \in(2-\delta, 2+\delta)$ except possibly $x=2$.
3. (10 points) Show that the function $f:(0,4) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{1}{x^{2}}
$$

is continuous at $a=\frac{1}{3}$ and that it is not uniformly continuous on (0,4). When showing continuity at $\frac{1}{3}$ you MUST verify the $\epsilon-\delta$ definition directly and cannot simply quote the fact that quotients of continuous functions are continuous whenever the denominator is nonzero.
4. (10 points) Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable everywhere but not twice differentiable at 1 . Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=(x-1) g(x)
$$

is twice differentiable at 1. Hint: The product rule will say right away that f is differentiable everywhere, but it won't immediately say that f is twice differentiable.
5. (10 points) Prove that $1-\sin x \leq e^{x}$ for all $x \geq 0$. Hint: Find a good function to which you can apply the Mean Value Theorem.

