Math 320-1: Midterm 2 Northwestern University, Fall 2019

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A function on \mathbb{R} which is continuous only at 2 .
(b) An unbounded function on \mathbb{R} which is uniformly continuous on any bounded interval.
(c) A function on \mathbb{R} which does not have an anti-derivative.
(d) A differentiable function \mathbb{R} which is not continuously differentiable.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Show, by verifying the $\epsilon-\delta$ definition directly, that the function $f(x)=x^{3}-2 x$ is continuous on the interval $(-10,3)$. You will need the following: $x^{3}-a^{3}=\left(x^{2}+a x+a^{2}\right)(x-a)$.
3. (10 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded and continuous, and let M denote the supremum of the values of f :

$$
M=\sup \{f(x) \mid x \in \mathbb{R}\}
$$

Show that for any $\epsilon>0$, there exists a rational number $a \in \mathbb{R}$ such that $M-\epsilon<f(a)$. Hint: First take (why does this exist?) a real number $y \in \mathbb{R}$ such that $M-\frac{\epsilon}{2}<f(y)$, and consider a sequence of rationals converging to y.
4. (10 points) Determine, with justification, the largest k for which the following function $f: \mathbb{R} \rightarrow \mathbb{R}$ is k-times differentiable, and if its k-th derivative is continuous.

$$
f(x)= \begin{cases}x^{3} & x>0 \\ x^{2} & x \leq 0\end{cases}
$$

5. (10 points) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is differentiable and nonnegative, satisfies $f(0)=0$, and that there exists $0<M<1$ such that

$$
f^{\prime}(x) \leq M f(x) \text { for all } x \in[0,1] .
$$

If f is not decreasing, show that f is the constant zero function. Hint: $f(x)=f(x)-f(0)$.

