Math 320-1: Midterm 2 Solutions
Northwestern University, Fall 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A function on R which is nowhere continuous.
(b) A function f : R — R which is uniformly continuous on [2, 100] but not on all of R.
(c¢) A function on R which is differentiable but not twice differentiable.
(d) A function f: R — R which is differentiable at 3 and nowhere else.

Solutions. (a) The function f: R — R defined by
1 ifze@Q
fz) = .
0 ifz¢Q

is nowhere continuous.

(b) The function f(z) = 22 is uniformly continuous on any closed interval but not on all of R.
(c) The function f: R — R defined by

flz) =

1
$281n5 x#0
0 z=0

is differentiable but not twice differentiable, as shown in class or on a homework assignment.
(d) The function defined by
(x—3)?2 z€Q
-]

0 ¢ Q

works. This is differentiable at 3 since

i £@) = 16)
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=0

by considering the cases where f(x) = (z — 3)? or f(z) = 0 in the numerator separately. However,
f is not continuous at any = # 3, so it is not differentiable at such x either. 0

2. Suppose that f: R — R is a function such that lim,_,o f(z) = L exists and
2<L <5,

Show that there exists 0 > 0 such that 2 < f(x) < 5 for all z € (2— 9,2+ 0) except possibly x = 2.
Proof. Since L—2>0and 5— L >0, min{L —2,5— L} > 0. Hence there exists 6 > 0 such that
|f(z) = L| <min{L —2,5-L}if0< |z —2| <.

Thus for z € (2 — 6,2+ §) such that x # 2, we have
—(L—-2)<-—min{L—-2,5—-L} < f(z) —L <min{L—2,5—-L} <5—1L,
which implies after adding L throughout that
2< f(x)<5b

for such z, as was to be shown. O



3. Show that the function f : (0,4) — R defined by

is continuous at a = % and that it is not uniformly continuous on (0,4). When showing continuity
at % you MUST verify the e-d definition directly and cannot simply quote the fact that quotients

of continuous functions are continuous whenever the denominator is nonzero.

Proof. Let € > 0 and let 6 = min{

Then in particular

m, é}, which is also positive. Suppose that |z — %] < 9.

1 1 1 1 1
|x_§|<67so_6<x—§andhence6<x.
Thus
11| k=) -+l s4+d)
P V2] By 1/(36-9) =

so we conclude that f is continuous at %

Since f cannot be extended to a continuous function on [0, 4], it is not uniformly continuous on
(0,4). Another way to see this is to note that the sequence 1 is Cauchy in (0,4) but the sequence
f (%) = n? is not, and uniformly continuous functions should send Cauchy sequences to Cauchy
sequences. ]

4. Suppose that g : R — R is continuously differentiable everywhere but not twice differentiable
at 1. Show that the function f: R — R defined by

f(z) = (z = 1)g(x)

is twice differentiable at 1. Hint: The product rule will say right away that f is differentiable
everywhere, but it won’t immediately say that f is twice differentiable.

Proof. Since g and x — 1 are differentiable, the product rule implies that f is differentiable and
fl(@) =g(z) + (z - 1)g'(2)
for any x € R. In particular this gives f'(1) = g(1). Now, we have
@)= (1) gl@)+@-1)g'(@) —g(d) _g(z)—g(1)

_ _ /
z—1 N rz—1 z—1 + ().
Since g is differentiable at 1 we have
_ge) —g(1) _
lim =————= =g¢'(1
mLII% r—1 g ( )
and since ¢’ is continuous we have
lim ¢'(x) = ¢'(1).
z—1
e fi@) = ()
x p—
lim —~———~"2 = ¢/(1 "1
i ——— g(1)+g(1)
exists, so f is twice differentiable at 1. O



5. Prove that 1 —sinz < e” for all x > 0. Hint: Find a good function to which you can apply the
Mean Value Theorem.

Proof. Let f(x) = €* + sinx. First, f(0) = €’ +sin0 = 1, so 1 —sin0 = ¢ and the claimed
inequality holds in this case. Now fix x > 0. Since f is differentiable, the Mean Value Theorem
says that there exists ¢ between x and 0 such that

f(z) = f(0) = f'(c)(x — 0) = (e +sinc)z.
Since ¢ > 0, e¢ > 1 > sinc, so e +sinc > 0. Hence
f(x) = £(0) >0,

SO
e’ +sinx—1>0

and the desired inequality follows by moving sinx and —1 to the right-hand side. O



