Math 320-1: Midterm 2 Solutions
 Northwestern University, Fall 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A function on \mathbb{R} which is nowhere continuous.
(b) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is uniformly continuous on $[2,100]$ but not on all of \mathbb{R}.
(c) A function on \mathbb{R} which is differentiable but not twice differentiable.
(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable at 3 and nowhere else.

Solutions. (a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is nowhere continuous.
(b) The function $f(x)=x^{2}$ is uniformly continuous on any closed interval but not on all of \mathbb{R}.
(c) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

is differentiable but not twice differentiable, as shown in class or on a homework assignment.
(d) The function defined by

$$
f(x)= \begin{cases}(x-3)^{2} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

works. This is differentiable at 3 since

$$
\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=0
$$

by considering the cases where $f(x)=(x-3)^{2}$ or $f(x)=0$ in the numerator separately. However, f is not continuous at any $x \neq 3$, so it is not differentiable at such x either.
2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $\lim _{x \rightarrow 2} f(x)=L$ exists and

$$
2<L<5 .
$$

Show that there exists $\delta>0$ such that $2<f(x)<5$ for all $x \in(2-\delta, 2+\delta)$ except possibly $x=2$.
Proof. Since $L-2>0$ and $5-L>0, \min \{L-2,5-L\}>0$. Hence there exists $\delta>0$ such that

$$
|f(x)-L|<\min \{L-2,5-L\} \text { if } 0<|x-2|<\delta .
$$

Thus for $x \in(2-\delta, 2+\delta)$ such that $x \neq 2$, we have

$$
-(L-2) \leq-\min \{L-2,5-L\}<f(x)-L<\min \{L-2,5-L\} \leq 5-L,
$$

which implies after adding L throughout that

$$
2<f(x)<5
$$

for such x, as was to be shown.
3. Show that the function $f:(0,4) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{1}{x^{2}}
$$

is continuous at $a=\frac{1}{3}$ and that it is not uniformly continuous on (0,4). When showing continuity at $\frac{1}{3}$ you MUST verify the $\epsilon-\delta$ definition directly and cannot simply quote the fact that quotients of continuous functions are continuous whenever the denominator is nonzero.

Proof. Let $\epsilon>0$ and let $\delta=\min \left\{\frac{\epsilon}{324\left(4+\frac{1}{3}\right)}, \frac{1}{6}\right\}$, which is also positive. Suppose that $\left|x-\frac{1}{3}\right|<\delta$. Then in particular

$$
\left|x-\frac{1}{3}\right|<\frac{1}{6}, \text { so }-\frac{1}{6}<x-\frac{1}{3} \text { and hence } \frac{1}{6}<x .
$$

Thus

$$
\left|\frac{1}{x^{2}}-\frac{1}{1 / 3^{2}}\right|=\frac{\left|x^{2}-\left(\frac{1}{3}\right)^{2}\right|}{x^{2} / 9}=\frac{\left|x-\frac{1}{3}\right|\left|x+\frac{1}{3}\right|}{x^{2} / 9}<\frac{\delta\left(4+\frac{1}{3}\right)}{1 /(36 \cdot 9)} \leq \epsilon,
$$

so we conclude that f is continuous at $\frac{1}{3}$.
Since f cannot be extended to a continuous function on $[0,4]$, it is not uniformly continuous on $(0,4)$. Another way to see this is to note that the sequence $\frac{1}{n}$ is Cauchy in $(0,4)$ but the sequence $f\left(\frac{1}{n}\right)=n^{2}$ is not, and uniformly continuous functions should send Cauchy sequences to Cauchy sequences.
4. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable everywhere but not twice differentiable at 1 . Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=(x-1) g(x)
$$

is twice differentiable at 1 . Hint: The product rule will say right away that f is differentiable everywhere, but it won't immediately say that f is twice differentiable.

Proof. Since g and $x-1$ are differentiable, the product rule implies that f is differentiable and

$$
f^{\prime}(x)=g(x)+(x-1) g^{\prime}(x)
$$

for any $x \in \mathbb{R}$. In particular this gives $f^{\prime}(1)=g(1)$. Now, we have

$$
\frac{f^{\prime}(x)-f^{\prime}(1)}{x-1}=\frac{g(x)+(x-1) g^{\prime}(x)-g(1)}{x-1}=\frac{g(x)-g(1)}{x-1}+g^{\prime}(x) .
$$

Since g is differentiable at 1 we have

$$
\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=g^{\prime}(1)
$$

and since g^{\prime} is continuous we have

$$
\lim _{x \rightarrow 1} g^{\prime}(x)=g^{\prime}(1)
$$

Thus

$$
\lim _{x \rightarrow 1} \frac{f^{\prime}(x)-f^{\prime}(1)}{x-1}=g^{\prime}(1)+g^{\prime}(1)
$$

exists, so f is twice differentiable at 1 .
5. Prove that $1-\sin x \leq e^{x}$ for all $x \geq 0$. Hint: Find a good function to which you can apply the Mean Value Theorem.

Proof. Let $f(x)=e^{x}+\sin x$. First, $f(0)=e^{0}+\sin 0=1$, so $1-\sin 0=e^{0}$ and the claimed inequality holds in this case. Now fix $x>0$. Since f is differentiable, the Mean Value Theorem says that there exists c between x and 0 such that

$$
f(x)-f(0)=f^{\prime}(c)(x-0)=\left(e^{c}+\sin c\right) x .
$$

Since $c \geq 0, e^{c} \geq 1 \geq \sin c$, so $e^{c}+\sin c \geq 0$. Hence

$$
f(x)-f(0) \geq 0,
$$

so

$$
e^{x}+\sin x-1 \geq 0
$$

and the desired inequality follows by moving $\sin x$ and -1 to the right-hand side.

