Math 320-1: Midterm 2 Solutions
 Northwestern University, Fall 2019

1. Give an example of each of the following. You do not have to justify your answer.
(a) A function on \mathbb{R} which is continuous only at 2 .
(b) An unbounded function on \mathbb{R} which is uniformly continuous on any bounded interval.
(c) A function on \mathbb{R} which does not have an anti-derivative.
(d) A differentiable function \mathbb{R} which is not continuously differentiable.

Solution. (a) The function defined by $f(x)=x-2$ for $x \in \mathbb{Q}$ and $f(x)=0$ for $x \notin \mathbb{Q}$ works.
(b) The function $f(x)=x$ works. This is uniformly continuous on any bounded interval since it is continuous on any $[a, b]$.
(c) Any function with a jump discontinuity works, say the one defined by $f(x)=0$ for $x \leq 0$ and $f(x)=1$ for $x>0$. This does not have an anti-derivative since it does not have the intermediate value property.
(d) The function defined by $f(x)=x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$ works, as we saw in class.
2. Show, by verifying the $\epsilon-\delta$ definition directly, that the function $f(x)=x^{3}-2 x$ is continuous on the interval $(-10,3)$. You will need the following: $x^{3}-a^{3}=\left(x^{2}+a x+a^{2}\right)(x-a)$.

Proof. First note that for $x \in(-10,3),|x| \leq 10$. Fix $a \in(-10,3)$ and let $\epsilon>0$. Set

$$
\delta=\frac{\epsilon}{100+100|a|+|a|^{2}}>0
$$

Then if $|x-a|<\delta$, we have:

$$
\left|x^{3}-a^{3}\right|=\left|x^{2}+a x+a^{2}\right||x-a| \leq\left(|x|^{2}+|a||x|+|a|^{2}\right)|x-a| \leq\left(100+100|a|+|a|^{2}\right)|x-a|<\epsilon .
$$

Thus f is continuous at a, and since $a \in(-10,3)$ was arbitrary, f is continuous on $(-10,3)$.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded and continuous, and let M denote the supremum of the values of f :

$$
M=\sup \{f(x) \mid x \in \mathbb{R}\}
$$

Show that for any $\epsilon>0$, there exists a rational number $a \in \mathbb{R}$ such that $M-\epsilon<f(a)$.
Proof. Let $\epsilon>0$. Then $M-\frac{\epsilon}{2}$ is not an upper bound of the set of values of f, so there exists such a value $f(y)$ such that $M-\frac{\epsilon}{2}<f(y)$. Take a sequence of rationals r_{n} which converges to y. Then $f\left(r_{n}\right)$ converges to $f(y)$ since f is continuous, so there exists some N such that $f\left(r_{N}\right)$ is within $\frac{\epsilon}{2}$ of $f(y)$:

$$
\left|f\left(r_{N}\right)-f(y)\right|<\frac{\epsilon}{2} .
$$

For the rational $a=r_{N}$ we thus have:

$$
M-\epsilon=M-\frac{\epsilon}{2}-\frac{\epsilon}{2}<f(y)-\frac{\epsilon}{2}<f(a)
$$

as desired. (The point is that $f(a)$ is within $\frac{\epsilon}{2}$ of $f(y)$, which in turn is within $\frac{\epsilon}{2}$ of M, which implies that $f(a)$ is within $\frac{\epsilon}{2}+\frac{\epsilon}{2}$ of M.)

Alternatively, after we have $f(y)$ as above, we can get a as follows. Since f is continuous at y, there exists $\delta>0$ such that

$$
|x-y|<\delta \text { implies }|f(x)-f(y)|<\frac{\epsilon}{2} .
$$

Thus for a rational a in $(y-\delta, y+\delta)$, which exists by the denseness of \mathbb{Q} in \mathbb{R}, we get $|f(a)-f(y)|<\frac{\epsilon}{2}$, and the same reasoning as above implies that $M-\epsilon<f(a)$.
4. Determine, with justification, the largest k for which the following function $f: \mathbb{R} \rightarrow \mathbb{R}$ is k-times differentiable, and if its k-th derivative is continuous.

$$
f(x)= \begin{cases}x^{3} & x>0 \\ x^{2} & x \leq 0\end{cases}
$$

Solution. First, for f is differentiable at any $x \neq 0$, since near any such point f agrees completely with either x^{3} or x^{2}, each of which are differentiable at nonzero x. Since:

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{-}} x=0
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{3}}{x}=\lim _{x \rightarrow 0^{+}} x^{2}=0,
$$

we have $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists and equals zero, so $f^{\prime}(0)=0$. Thus f is at least 1 -time differentiable and

$$
f^{\prime}(x)= \begin{cases}3 x^{2} & x>0 \\ 0 & x=0 \\ 2 x & x<0\end{cases}
$$

Next, we have:

$$
\lim _{x \rightarrow 0^{-}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{2 x}{x}=2
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{3 x^{2}}{x}=0 .
$$

Since these do not agree, $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}$ does not exist, so f is not twice differentiable at 0 . Thus $k=1$ is the largest k for which f is k-times differentiable.

Since

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} 2 x=0
$$

and

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} 3 x^{2}=0
$$

we have $\lim _{x \rightarrow 0} f^{\prime}(x)=0=f^{\prime}(0)$, so f^{\prime} is continuous at 0 ; it is continuous at nonzero x since $3 x^{2}$ and $2 x$ are each continuous.
5. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is differentiable and nonnegative, satisfies $f(0)=0$, and that there exists $0<M<1$ such that

$$
f^{\prime}(x) \leq M f(x) \text { for all } x \in[0,1] .
$$

If f is not decreasing, show that f is the constant zero function. Hint: $f(x)=f(x)-f(0)$.

Proof. Fix $x \in(0,1]$. By the Mean Value Theorem there exists $c \in(0, x)$ such that

$$
f(x)-f(0)=f^{\prime}(c)(x-0), \text { which becomes } f(x)=f^{\prime}(c) x \text {. }
$$

By the given assumption, $f^{\prime}(c) \leq M f(c)$, so

$$
f(x)=f^{\prime}(c) x \leq M f(c) x
$$

Since $x<1$ and $f(c) \leq f(x)$ because f is not decreasing (and $c<x$), this gives:

$$
0 \leq f(x) \leq M f(c) x \leq M f(x)
$$

Since $0<M<1$, this implies $f(x)=0$, so f is the constant zero function, given that we already know $f(0)=0$.

