Math 320-3: Midterm 2 Solutions Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.

- (a) A bounded subset of \mathbb{R}^3 which is not a Jordan region.
- (b) A bounded function on $[0,1] \times [0,1]$ which is not integrable.
- (c) A non-constant function on $[0,1] \times [0,1]$ whose iterated integrals exist and are equal.
- (d) A function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ which sends the rectangle $[0,1] \times [0,2\pi]$ to the ellipse $x^2 + 2y^2 \leq 1$.

Solution. (a) The subset of points in $[0,1] \times [0,1] \times [0,1]$ where all coordinates are rational works. The boundary of this is all of $[0,1] \times [0,1] \times [0,1]$, which does not have volume zero.

(b) The function which is 1 at each point with rational coordinates and 0 elsewhere works, since for any grid the upper sum is always 1 and the lower sum is always 0 by the denseness of \mathbb{Q} and of $\mathbb{R} \setminus \mathbb{Q}$ in \mathbb{R} .

(c) Any non-constant function to which Fubini's Theorem applies will work, such as f(x, y) = xy. Fubini's Theorem applies because this is continuous.

(d) The function $\phi(r,\theta) = (r\cos\theta, \frac{1}{\sqrt{2}}r\sin\theta)$ works. Indeed, with $x = r\cos\theta$ and $y = \frac{1}{\sqrt{2}}r\sin\theta$, we have

$$x^{2} + 2y^{2} = r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta = r^{2},$$

so as r ranges from 0 to 1 and θ from 0 to 2π these (x, y) values fill out the ellipse $x^2 + 2y^2 \le 1$. \Box

2. For a Jordan region E of \mathbb{R}^2 , let (1,1) + E denote the set obtained by adding (1,1) to each point of E:

$$(1,1) + E := \{ (1+x, 1+y) \mid (x,y) \in E \}.$$

Show that (1,1) + E is also a Jordan region.

Proof. First we claim that the boundary of (1, 1) + E is $(1, 1) + \partial E$. Indeed, let $p \in \partial E$ and let U be an open ball around (1, 1) + p. Then (-1, -1) + U is an open ball around p, so since p is a boundary point of E, this ball contains an element $q \in E$ and an element $z \notin E$. Then $(1, 1) + q \in U$ and $(1, 1) + z \in U$, so U contains a point (1, 1) + q of (1, 1) + E and a point (1, 1) + z not of (1, 1) + E. Hence (1, 1) + p is in the boundary of (1, 1) + E. By the same reasoning, if a is in the boundary of (1, 1) + E, then (-1, -1) + a is in the boundary of E, so any point in the boundary of (1, 1) + E is of the form "(1, 1) plus a point in the boundary of E", so

$$\partial((1,1) + E) = (1,1) + \partial E$$

as claimed.

Let $\epsilon > 0$ and let R be a rectangle containing E. Since E is a Jordan region there exists a grid G on R such that $V(\partial E, G) < \epsilon$. The translation (1,1) + R is then a rectangle containing (1,1)+E, and translating the grid G gives a grid (1,1)+G on (1,1)+R. By what we showed above, a subrectangle of (1,1) + G which intersects the boundary of (1,1) + E is of the form $(1,1) + R_i$ where R_i is a subrectangle of G; if $R_i = [a,b] \times [c,d]$, then $(1,1) + R_i = [a+1,b+1] \times [c+1,d+1]$ so

$$|(1,1) + R_i| = ((b+1) - (a+1))((d+1) - (c+1)) = (b-a)(d-c) = |R_i|.$$

Hence

$$V(\partial((1,1)+E));(1,1)+G) = \sum_{((1,1)+R_i)\cap\partial((1,1)+E)} |(1,1)+R_i|$$

$$= \sum_{R_i \cap \partial E} |(1,1) + R_i|$$
$$= \sum_{R_i \cap \partial E} |R_i|$$
$$= V(\partial E; G)$$
$$< \epsilon,$$

so the boundary of (1, 1) + E has volume zero and thus (1, 1) + E is a Jordan region as claimed. \Box

3. Define $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ by

$$f(x,y) = \begin{cases} x & \text{if } y = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable over $[0,1] \times [0,1]$ and determine the value of its integral.

Proof. Given any grid G on $[0, 1] \times [0, 1]$, on any subrectangle there is a point not of the form $(x, \frac{1}{n})$, and so a point where f = 0. Thus the infimum of f over any subrectangle is 0 and hence

$$L(f,G) = 0$$

for any grid G.

Let $\epsilon > 0$ and pick $N \in \mathbb{N}$ such that $\frac{1}{N+1} \leq \frac{\epsilon}{2}$. For each $n = 1, \ldots, N$, pick a rectangle R_n of width 1 and height smaller than $\frac{\epsilon}{2N}$ which contains the horizontal line $y = \frac{1}{n}$; if need be make these rectangles smaller to ensure that they do not intersect each other. Let G be the grid on $[0, 1] \times [0, 1]$ determined by these rectangles and the rectangle $[0, 1] \times [0, \frac{\epsilon}{2}]$ along the bottom. Then only nonzero contributions to U(f, G) come from the rectangle at the bottom of height $\frac{\epsilon}{2}$ and the R_n defined above. On any of these, $\sup f \leq 1$, so:

$$\begin{split} U(f,G) &= (\sup f \text{ on bottom rectangle}) \frac{\epsilon}{2} + \sum_{R_n} (\sup f) |R_n| \\ &< \frac{\epsilon}{2} + \sum_{n=1}^N \frac{\epsilon}{2N} \\ &= \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

Thus $U(f,G) - L(f,G) < \epsilon$, so f is integrable as claimed. Since the supremum of all lower sums is zero, the integral of f over $[0,1] \times [0,1]$ is zero as well.

4. Suppose that A and B are two Jordan regions in \mathbb{R}^2 such that for any vertical line L, the intersection of A with L has the same length as the intersection of B with L. Show that A and B have the same area.

Proof. Since A and B are Jordan regions, they are bounded so we can find some a and b such that both A and B lie fully within the vertical lines x = a and x = b. Since the constant function 1 is

continuous, it is integrable over both A and B as are the single variable constant functions obtained by holding x or y fixed. Thus Fubini's Theorem gives:

$$\operatorname{area}(A) = \iint_A 1 \, dA = \int_a^b \int_{A \cap L_x} 1 \, dy \, dx$$

and

$$\operatorname{area}(B) = \iint_{A} 1 \, dA = \int_{a}^{b} \int_{B \cap L_{x}} 1 \, dy \, dx$$

where L_x is the vertical line at a fixed value of x. The inner single-variable integrals give the lengths (measured vertically) of $A \cap L_x$ and $B \cap L_x$, so

$$\operatorname{area}(A) = \int_{a}^{b} \operatorname{length}(A \cap L_{x}) dx$$
 and $\operatorname{area}(B) = \int_{a}^{b} \operatorname{length}(B \cap L_{x}) dx$.

Note that for certain x, the intersections $A \cap L_x$ or $B \cap L_x$ could have length zero, say if the intersection was empty or just a finite number of points. By our given assumption,

$$length(A \cap L_x) = length(B \cap L_x)$$
 for any $x \in [a, b]$,

so the above integrals are equal and thus $\operatorname{area}(A) = \operatorname{area}(B)$ as claimed.

5. Show that for any strictly positive continuous function $f : \mathbb{R}^2 \to \mathbb{R}$, we have

$$\int_{B_2(1,1)} 2f(x,y) \, d(x,y) > \int_{B_1(0,0)} 6f(1+2u,1+2v) \, d(u,v).$$

To be clear, $B_2(1,1)$ denotes the disk of radius 2 centered at (1,1) and $B_1(0,0)$ the disk of radius 1 centered at (0,0).

Proof. Let $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ be the change of variables function

$$\phi(u, v) = (1 + 2u + 1 + 2v),$$

which is C^1 , one-to-one, and has Jacobian equal to twice the identity matrix everywhere, which is invertible. Since $\phi(B_1(0,0)) = B_2(1,1)$, the change of variables formula gives

$$\int_{B_2(1,1)=\phi(B_1(0,0))} 2f(x,y) \, d(x,y) = \int_{B_1(0,0)} 2f(1+2u,1+2v) 4 \, d(u,v),$$

since det $D\phi = 4$ everywhere. Since f is positive, 8f > 6f and thus since f is continuous this final integral

$$\int_{B_1(0,0)} 8f(1+2u,1+2v) \, d(u,v)$$

is strictly larger than

$$\int_{B_1(0,0)} 6f(1+2u,1+2v) 6\,d(u,v).$$

Thus

$$\int_{B_2(1,1)} 2f(x,y) \, d(x,y) > \int_{B_1(0,0)} 6f(1+2u,1+2v) \, d(u,v)$$

as claimed.