Math 320-3: Midterm 2 Solutions Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A bounded subset of \mathbb{R}^{3} which is not a Jordan region.
(b) A bounded function on $[0,1] \times[0,1]$ which is not integrable.
(c) A non-constant function on $[0,1] \times[0,1]$ whose iterated integrals exist and are equal.
(d) A function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which sends the rectangle $[0,1] \times[0,2 \pi]$ to the ellipse $x^{2}+2 y^{2} \leq 1$.

Solution. (a) The subset of points in $[0,1] \times[0,1] \times[0,1]$ where all coordinates are rational works. The boundary of this is all of $[0,1] \times[0,1] \times[0,1]$, which does not have volume zero.
(b) The function which is 1 at each point with rational coordinates and 0 elsewhere works, since for any grid the upper sum is always 1 and the lower sum is always 0 by the denseness of \mathbb{Q} and of $\mathbb{R} \backslash \mathbb{Q}$ in \mathbb{R}.
(c) Any non-constant function to which Fubini's Theorem applies will work, such as $f(x, y)=x y$. Fubini's Theorem applies because this is continuous.
(d) The function $\phi(r, \theta)=\left(r \cos \theta, \frac{1}{\sqrt{2}} r \sin \theta\right)$ works. Indeed, with $x=r \cos \theta$ and $y=\frac{1}{\sqrt{2}} r \sin \theta$, we have

$$
x^{2}+2 y^{2}=r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2},
$$

so as r ranges from 0 to 1 and θ from 0 to 2π these (x, y) values fill out the ellipse $x^{2}+2 y^{2} \leq 1$.
2. For a Jordan region E of \mathbb{R}^{2}, let $(1,1)+E$ denote the set obtained by adding $(1,1)$ to each point of E :

$$
(1,1)+E:=\{(1+x, 1+y) \mid(x, y) \in E\} .
$$

Show that $(1,1)+E$ is also a Jordan region.
Proof. First we claim that the boundary of $(1,1)+E$ is $(1,1)+\partial E$. Indeed, let $p \in \partial E$ and let U be an open ball around $(1,1)+p$. Then $(-1,-1)+U$ is an open ball around p, so since p is a boundary point of E, this ball contains an element $q \in E$ and an element $z \notin E$. Then $(1,1)+q \in U$ and $(1,1)+z \in U$, so U contains a point $(1,1)+q$ of $(1,1)+E$ and a point $(1,1)+z$ not of $(1,1)+E$. Hence $(1,1)+p$ is in the boundary of $(1,1)+E$. By the same reasoning, if a is in the boundary of $(1,1)+E$, then $(-1,-1)+a$ is in the boundary of E, so any point in the boundary of $(1,1)+E$ is of the form " $(1,1)$ plus a point in the boundary of E ", so

$$
\partial((1,1)+E)=(1,1)+\partial E
$$

as claimed.
Let $\epsilon>0$ and let R be a rectangle containing E. Since E is a Jordan region there exists a $\operatorname{grid} G$ on R such that $V(\partial E, G)<\epsilon$. The translation $(1,1)+R$ is then a rectangle containing $(1,1)+E$, and translating the grid G gives a grid $(1,1)+G$ on $(1,1)+R$. By what we showed above, a subrectangle of $(1,1)+G$ which intersects the boundary of $(1,1)+E$ is of the form $(1,1)+R_{i}$ where R_{i} is a subrectangle of G; if $R_{i}=[a, b] \times[c, d]$, then $(1,1)+R_{i}=[a+1, b+1] \times[c+1, d+1]$ so

$$
\left|(1,1)+R_{i}\right|=((b+1)-(a+1))((d+1)-(c+1))=(b-a)(d-c)=\left|R_{i}\right| .
$$

Hence

$$
V(\partial((1,1)+E)) ;(1,1)+G)=\sum_{\left.\left((1,1)+R_{i}\right) \cap \partial((1,1)+E)\right)}\left|(1,1)+R_{i}\right|
$$

$$
\begin{aligned}
& =\sum_{R_{i} \cap \partial E}\left|(1,1)+R_{i}\right| \\
& =\sum_{R_{i} \cap \partial E}\left|R_{i}\right| \\
& =V(\partial E ; G) \\
& <\epsilon,
\end{aligned}
$$

so the boundary of $(1,1)+E$ has volume zero and thus $(1,1)+E$ is a Jordan region as claimed.
3. Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}x & \text { if } y=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is integrable over $[0,1] \times[0,1]$ and determine the value of its integral.
Proof. Given any grid G on $[0,1] \times[0,1]$, on any subrectangle there is a point not of the form $\left(x, \frac{1}{n}\right)$, and so a point where $f=0$. Thus the infimum of f over any subrectangle is 0 and hence

$$
L(f, G)=0
$$

for any grid G.
Let $\epsilon>0$ and pick $N \in \mathbb{N}$ such that $\frac{1}{N+1} \leq \frac{\epsilon}{2}$. For each $n=1, \ldots, N$, pick a rectangle R_{n} of width 1 and height smaller than $\frac{\epsilon}{2 N}$ which contains the horizontal line $y=\frac{1}{n}$; if need be make these rectangles smaller to ensure that they do not intersect each other. Let G be the grid on $[0,1] \times[0,1]$ determined by these rectangles and the rectangle $[0,1] \times\left[0, \frac{\epsilon}{2}\right]$ along the bottom. Then only nonzero contributions to $U(f, G)$ come from the rectangle at the bottom of height $\frac{\epsilon}{2}$ and the R_{n} defined above. On any of these, $\sup f \leq 1$, so:

$$
\begin{aligned}
U(f, G) & =(\sup f \text { on bottom rectangle }) \frac{\epsilon}{2}+\sum_{R_{n}}(\sup f)\left|R_{n}\right| \\
& <\frac{\epsilon}{2}+\sum_{n=1}^{N} \frac{\epsilon}{2 N} \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Thus $U(f, G)-L(f, G)<\epsilon$, so f is integrable as claimed. Since the supremum of all lower sums is zero, the integral of f over $[0,1] \times[0,1]$ is zero as well.
4. Suppose that A and B are two Jordan regions in \mathbb{R}^{2} such that for any vertical line L, the intersection of A with L has the same length as the intersection of B with L. Show that A and B have the same area.

Proof. Since A and B are Jordan regions, they are bounded so we can find some a and b such that both A and B lie fully within the vertical lines $x=a$ and $x=b$. Since the constant function 1 is
continuous, it is integrable over both A and B as are the single variable constant functions obtained by holding x or y fixed. Thus Fubini's Theorem gives:

$$
\operatorname{area}(A)=\iint_{A} 1 d A=\int_{a}^{b} \int_{A \cap L_{x}} 1 d y d x
$$

and

$$
\operatorname{area}(B)=\iint_{A} 1 d A=\int_{a}^{b} \int_{B \cap L_{x}} 1 d y d x
$$

where L_{x} is the vertical line at a fixed value of x. The inner single-variable integrals give the lengths (measured vertically) of $A \cap L_{x}$ and $B \cap L_{x}$, so

$$
\operatorname{area}(A)=\int_{a}^{b} \operatorname{length}\left(A \cap L_{x}\right) d x \quad \text { and } \quad \operatorname{area}(B)=\int_{a}^{b} \operatorname{length}\left(B \cap L_{x}\right) d x .
$$

Note that for certain x, the intersections $A \cap L_{x}$ or $B \cap L_{x}$ could have length zero, say if the intersection was empty or just a finite number of points. By our given assumption,

$$
\operatorname{length}\left(A \cap L_{x}\right)=\operatorname{length}\left(B \cap L_{x}\right) \text { for any } x \in[a, b]
$$

so the above integrals are equal and thus area $(A)=\operatorname{area}(B)$ as claimed.
5. Show that for any strictly positive continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we have

$$
\int_{B_{2}(1,1)} 2 f(x, y) d(x, y)>\int_{B_{1}(0,0)} 6 f(1+2 u, 1+2 v) d(u, v) .
$$

To be clear, $B_{2}(1,1)$ denotes the disk of radius 2 centered at $(1,1)$ and $B_{1}(0,0)$ the disk of radius 1 centered at $(0,0)$.

Proof. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the change of variables function

$$
\phi(u, v)=(1+2 u+1+2 v),
$$

which is C^{1}, one-to-one, and has Jacobian equal to twice the identity matrix everywhere, which is invertible. Since $\phi\left(B_{1}(0,0)\right)=B_{2}(1,1)$, the change of variables formula gives

$$
\int_{B_{2}(1,1)=\phi\left(B_{1}(0,0)\right)} 2 f(x, y) d(x, y)=\int_{B_{1}(0,0)} 2 f(1+2 u, 1+2 v) 4 d(u, v)
$$

since det $D \phi=4$ everywhere. Since f is positive, $8 f>6 f$ and thus since f is continuous this final integral

$$
\int_{B_{1}(0,0)} 8 f(1+2 u, 1+2 v) d(u, v)
$$

is strictly larger than

$$
\int_{B_{1}(0,0)} 6 f(1+2 u, 1+2 v) 6 d(u, v) .
$$

Thus

$$
\int_{B_{2}(1,1)} 2 f(x, y) d(x, y)>\int_{B_{1}(0,0)} 6 f(1+2 u, 1+2 v) d(u, v)
$$

as claimed.

