
Math 320-3: Midterm 2 Solutions
Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A bounded subset of R3 which is not a Jordan region.
(b) A bounded function on [0, 1]× [0, 1] which is not integrable.
(c) A non-constant function on [0, 1]× [0, 1] whose iterated integrals exist and are equal.
(d) A function φ : R2 → R2 which sends the rectangle [0, 1]× [0, 2π] to the ellipse x2 + 2y2 ≤ 1.

Solution. (a) The subset of points in [0, 1]× [0, 1]× [0, 1] where all coordinates are rational works.
The boundary of this is all of [0, 1]× [0, 1]× [0, 1], which does not have volume zero.

(b) The function which is 1 at each point with rational coordinates and 0 elsewhere works, since
for any grid the upper sum is always 1 and the lower sum is always 0 by the denseness of Q and of
R \Q in R.

(c) Any non-constant function to which Fubini’s Theorem applies will work, such as f(x, y) = xy.
Fubini’s Theorem applies because this is continuous.

(d) The function φ(r, θ) = (r cos θ, 1√
2
r sin θ) works. Indeed, with x = r cos θ and y = 1√

2
r sin θ,

we have
x2 + 2y2 = r2 cos2 θ + r2 sin2 θ = r2,

so as r ranges from 0 to 1 and θ from 0 to 2π these (x, y) values fill out the ellipse x2 +2y2 ≤ 1.

2. For a Jordan region E of R2, let (1, 1) + E denote the set obtained by adding (1, 1) to each
point of E:

(1, 1) + E := {(1 + x, 1 + y) | (x, y) ∈ E}.

Show that (1, 1) + E is also a Jordan region.

Proof. First we claim that the boundary of (1, 1)+E is (1, 1)+∂E. Indeed, let p ∈ ∂E and let U be
an open ball around (1, 1)+p. Then (−1,−1)+U is an open ball around p, so since p is a boundary
point of E, this ball contains an element q ∈ E and an element z /∈ E. Then (1, 1) + q ∈ U and
(1, 1) + z ∈ U , so U contains a point (1, 1) + q of (1, 1) +E and a point (1, 1) + z not of (1, 1) +E.
Hence (1, 1) + p is in the boundary of (1, 1) +E. By the same reasoning, if a is in the boundary of
(1, 1) +E, then (−1,−1) + a is in the boundary of E, so any point in the boundary of (1, 1) +E is
of the form “(1, 1) plus a point in the boundary of E”, so

∂((1, 1) + E) = (1, 1) + ∂E

as claimed.
Let ε > 0 and let R be a rectangle containing E. Since E is a Jordan region there exists a

grid G on R such that V (∂E,G) < ε. The translation (1, 1) + R is then a rectangle containing
(1, 1)+E, and translating the grid G gives a grid (1, 1)+G on (1, 1)+R. By what we showed above,
a subrectangle of (1, 1) + G which intersects the boundary of (1, 1) + E is of the form (1, 1) + Ri
where Ri is a subrectangle of G; if Ri = [a, b]× [c, d], then (1, 1) +Ri = [a+ 1, b+ 1]× [c+ 1, d+ 1]
so

|(1, 1) +Ri| = ((b+ 1)− (a+ 1))((d+ 1)− (c+ 1)) = (b− a)(d− c) = |Ri|.

Hence

V (∂((1, 1) + E)); (1, 1) +G) =
∑

((1,1)+Ri)∩∂((1,1)+E))

|(1, 1) +Ri|



=
∑
Ri∩∂E

|(1, 1) +Ri|

=
∑
Ri∩∂E

|Ri|

= V (∂E;G)

< ε,

so the boundary of (1, 1)+E has volume zero and thus (1, 1)+E is a Jordan region as claimed.

3. Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
x if y = 1

n for some n ∈ N
0 otherwise.

Show that f is integrable over [0, 1]× [0, 1] and determine the value of its integral.

Proof. Given any grid G on [0, 1]× [0, 1], on any subrectangle there is a point not of the form (x, 1n),
and so a point where f = 0. Thus the infimum of f over any subrectangle is 0 and hence

L(f,G) = 0

for any grid G.
Let ε > 0 and pick N ∈ N such that 1

N+1 ≤
ε
2 . For each n = 1, . . . , N , pick a rectangle Rn

of width 1 and height smaller than ε
2N which contains the horizontal line y = 1

n ; if need be make
these rectangles smaller to ensure that they do not intersect each other. Let G be the grid on
[0, 1]× [0, 1] determined by these rectangles and the rectangle [0, 1]× [0, ε2 ] along the bottom. Then
only nonzero contributions to U(f,G) come from the rectangle at the bottom of height ε

2 and the
Rn defined above. On any of these, sup f ≤ 1, so:

U(f,G) = (sup f on bottom rectangle)
ε

2
+
∑
Rn

(sup f)|Rn|

<
ε

2
+

N∑
n=1

ε

2N

=
ε

2
+
ε

2
= ε.

Thus U(f,G)−L(f,G) < ε, so f is integrable as claimed. Since the supremum of all lower sums is
zero, the integral of f over [0, 1]× [0, 1] is zero as well.

4. Suppose that A and B are two Jordan regions in R2 such that for any vertical line L, the
intersection of A with L has the same length as the intersection of B with L. Show that A and B
have the same area.

Proof. Since A and B are Jordan regions, they are bounded so we can find some a and b such that
both A and B lie fully within the vertical lines x = a and x = b. Since the constant function 1 is

2



continuous, it is integrable over both A and B as are the single variable constant functions obtained
by holding x or y fixed. Thus Fubini’s Theorem gives:

area(A) =

∫∫
A

1 dA =

∫ b

a

∫
A∩Lx

1 dy dx

and

area(B) =

∫∫
A

1 dA =

∫ b

a

∫
B∩Lx

1 dy dx

where Lx is the vertical line at a fixed value of x. The inner single-variable integrals give the lengths
(measured vertically) of A ∩ Lx and B ∩ Lx, so

area(A) =

∫ b

a
length(A ∩ Lx) dx and area(B) =

∫ b

a
length(B ∩ Lx) dx.

Note that for certain x, the intersections A ∩ Lx or B ∩ Lx could have length zero, say if the
intersection was empty or just a finite number of points. By our given assumption,

length(A ∩ Lx) = length(B ∩ Lx) for any x ∈ [a, b],

so the above integrals are equal and thus area(A) = area(B) as claimed.

5. Show that for any strictly positive continuous function f : R2 → R, we have∫
B2(1,1)

2f(x, y) d(x, y) >

∫
B1(0,0)

6f(1 + 2u, 1 + 2v) d(u, v).

To be clear, B2(1, 1) denotes the disk of radius 2 centered at (1, 1) and B1(0, 0) the disk of radius
1 centered at (0, 0).

Proof. Let φ : R2 → R2 be the change of variables function

φ(u, v) = (1 + 2u+ 1 + 2v),

which is C1, one-to-one, and has Jacobian equal to twice the identity matrix everywhere, which is
invertible. Since φ(B1(0, 0)) = B2(1, 1), the change of variables formula gives∫

B2(1,1)=φ(B1(0,0))
2f(x, y) d(x, y) =

∫
B1(0,0)

2f(1 + 2u, 1 + 2v)4 d(u, v),

since detDφ = 4 everywhere. Since f is positive, 8f > 6f and thus since f is continuous this final
integral ∫

B1(0,0)
8f(1 + 2u, 1 + 2v) d(u, v)

is strictly larger than ∫
B1(0,0)

6f(1 + 2u, 1 + 2v)6 d(u, v).

Thus ∫
B2(1,1)

2f(x, y) d(x, y) >

∫
B1(0,0)

6f(1 + 2u, 1 + 2v) d(u, v)

as claimed.
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