Math 320-3: Midterm 2 Solutions
Northwestern University, Spring 2015

1. Give an example of each of the following. No justification is required.
(a) A bounded subset of R? which is not a Jordan region.
(b) A bounded function on [0, 1] x [0, 1] which is not integrable.
(¢) A non-constant function on [0, 1] x [0, 1] whose iterated integrals exist and are equal.
(d) A function ¢ : R? — R? which sends the rectangle [0, 1] x [0, 27] to the ellipse 22 + 2y? < 1.

Solution. (a) The subset of points in [0, 1] x [0, 1] x [0, 1] where all coordinates are rational works.
The boundary of this is all of [0, 1] x [0, 1] x [0, 1], which does not have volume zero.

(b) The function which is 1 at each point with rational coordinates and 0 elsewhere works, since
for any grid the upper sum is always 1 and the lower sum is always 0 by the denseness of Q and of
R\ Q in R.

(¢) Any non-constant function to which Fubini’s Theorem applies will work, such as f(x,y) = zy.
Fubini’s Theorem applies because this is continuous.

(d) The function ¢(r,8) = (rcos¥, fr sin @) works. Indeed, with x = rcosf and y = \}ET sin 6,
we have

22 + 2y = r?cos? 0 + r?sin? 0 = 2,
so as r ranges from 0 to 1 and 6 from 0 to 27 these (x,y) values fill out the ellipse 22 +2y% < 1. O

2. For a Jordan region E of R?, let (1,1) + E denote the set obtained by adding (1,1) to each
point of E:
(LD +E:={1+2z1+y)|(z,y) € E}.

Show that (1,1) + FE is also a Jordan region.

Proof. First we claim that the boundary of (1,1)+ E'is (1,1)+JE. Indeed, let p € OF and let U be
an open ball around (1,1)+p. Then (-1, —1)+U is an open ball around p, so since p is a boundary
point of E, this ball contains an element ¢ € F and an element z ¢ E. Then (1,1) + ¢ € U and
(1,1)+ 2z € U, so U contains a point (1,1) + ¢ of (1,1) + F and a point (1,1) 4+ z not of (1,1) + E.
Hence (1,1) + p is in the boundary of (1,1) + E. By the same reasoning, if a is in the boundary of
(1,1) + E, then (=1, —1) 4 a is in the boundary of E, so any point in the boundary of (1,1) + E is
of the form “(1,1) plus a point in the boundary of E”, so

a((1,1) + E) = (1,1) + 0F

as claimed.

Let € > 0 and let R be a rectangle containing E. Since E is a Jordan region there exists a
grid G on R such that V(OE,G) < e. The translation (1,1) + R is then a rectangle containing
(1,1)+ E, and translating the grid G gives a grid (1,1)+G on (1, 1)+ R. By what we showed above,
a subrectangle of (1,1) + G which intersects the boundary of (1, 1) + E is of the form (1,1) + R;
where R; is a subrectangle of G; if R; = [a,b] x [¢,d], then (1,1)+ R; = [a+ 1,b+ 1] x [c+1,d+ 1]
SO

(LD 4+ Ril = ((0+1) = (a+1))((d+1) = (c+ 1)) = (b—a)(d - c) = [Ril.

Hence

V(O((L1)+E);(1,1)+G) = > (1,1) + Ryl
(1L1)+R:)NO((1,1)+E))



= 3 L)+ R

R;,NOFE
= > IR
R;NOE
=V(0E;G)
<€,

so the boundary of (1,1)+ E has volume zero and thus (1, 1) + F is a Jordan region as claimed. [
3. Define f:[0,1] x [0,1] — R by

T ify:%forsomenGN

f(wny):{

0 otherwise.

Show that f is integrable over [0, 1] x [0, 1] and determine the value of its integral.

Proof. Given any grid G on [0,1] x [0, 1], on any subrectangle there is a point not of the form (z, 1),

and so a point where f = 0. Thus the infimum of f over any subrectangle is 0 and hence

for any grid G.

Let € > 0 and pick N € N such that ﬁ < 5. Foreach n = 1,..., N, pick a rectangle R,
of width 1 and height smaller than 5% which contains the horizontal line y = %; if need be make
these rectangles smaller to ensure that they do not intersect each other. Let G be the grid on
[0,1] x [0, 1] determined by these rectangles and the rectangle [0, 1] x [0, 5] along the bottom. Then
only nonzero contributions to U(f, &) come from the rectangle at the bottom of height § and the

R,, defined above. On any of these, sup f < 1, so:

U(f,G) = (sup f on bottom rectangle)% + Z(Sup )R]
Ry
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Thus U(f,G) — L(f,G) < ¢, so f is integrable as claimed. Since the supremum of all lower sums is
zero, the integral of f over [0, 1] x [0, 1] is zero as well. O

4. Suppose that A and B are two Jordan regions in R? such that for any vertical line L, the
intersection of A with L has the same length as the intersection of B with L. Show that A and B
have the same area.

Proof. Since A and B are Jordan regions, they are bounded so we can find some a and b such that
both A and B lie fully within the vertical lines x = a and 2 = b. Since the constant function 1 is



continuous, it is integrable over both A and B as are the single variable constant functions obtained
by holding x or y fixed. Thus Fubini’s Theorem gives:

b
area(A)://ldA:/ / ldydx
A a JANL,
b
area(B)://ldA:/ / ldydx
A a JBNL,

where L, is the vertical line at a fixed value of x. The inner single-variable integrals give the lengths
(measured vertically) of AN L, and BN Ly, so

and

b b
area(A) = / length(AN L,)dx and area(B) = / length(BN L,) dx.

Note that for certain z, the intersections A N L, or B N L, could have length zero, say if the
intersection was empty or just a finite number of points. By our given assumption,

length(A N Lg) = length(B N L) for any z € [a, b],
so the above integrals are equal and thus area(A) = area(B) as claimed. O

5. Show that for any strictly positive continuous function f : R? — R, we have
[ ey > [ 6712014 20 d(u.o).
Ba(1,1) B1(0,0)
To be clear, Ba(1,1) denotes the disk of radius 2 centered at (1,1) and B;(0,0) the disk of radius
1 centered at (0,0).
Proof. Let ¢ : R — R? be the change of variables function
d(u,v) = (1+2u+ 1+ 20),

which is C!, one-to-one, and has Jacobian equal to twice the identity matrix everywhere, which is
invertible. Since ¢(B1(0,0)) = Ba(1,1), the change of variables formula gives

2f(x,y)d(x,y) :/ 2f(1 4+ 2u, 1+ 2v)4d(u,v),

/Bz(l7l)¢(31(070)) B1(0,0)

since det D¢ = 4 everywhere. Since f is positive, 8f > 6f and thus since f is continuous this final
integral

/ 8f(1+2u,1+2v)d(u,v)
B1(0,0)

is strictly larger than
/ 6f(1+42u,1+2v)6d(u,v).
B1(0,0)

Thus
/ 2f(z,y)d(x,y) >/ 6f(1+2u,1+2v)d(u,v)
Ba(1,1)

B1(0,0)

as claimed. O



