
Math 320-2: Midterm 2 Solutions
Northwestern University, Winter 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A nonempty subset of R\Q which is both closed and open in R\Q.
(b) A Cauchy sequence in C[0, 1] relative to the sup metric.
(c) A metric on Q relative to which Q is complete.
(d) A dense subset of R whose boundary consists of a single point.

Note: in parts (a) and (d) we are considering the standard absolute value metric.

Solution. (a) The set (1, 2)∩ (R\Q) of irrational between 1 and 2 works, as does any subset of the
form (a, b) ∩ (R\Q) where a < b are both rational.

(b) Any constant sequence works, say fn(x) = 1 for all n and all x, or more generally any
uniformly convergent sequence.

(c) The discrete metric works, since the only Cauchy sequences with respect to a discrete metric
are ones which are eventually constant.

(d) The set R\{0} of nonzero real numbers is dense in R (since any nonempty open interval
contains a nonzero number) and has boundary {0}.

2. Suppose that X is a metric space and S = {p1, . . . , pn} is a finite subset of X. Show, using only
the definition of open, that the complement of S in X is open. (In other words, you cannot use the
fact that S is closed in X and the complement of a closed set is open.)

Proof. Let q ∈ Sc. Then q is different from each pi, so each distance d(q, pi) is positive. Set r =
min{d(q, p1), . . . , d(q, pn)}, which is thus positive. We claim that the open ball Br(q) is contained
in Sc. Indeed, if x ∈ Br(q), we have d(x, q) < r so for each i = 1, . . . , n:

d(pi, x) ≥ d(pi, q)− d(p, x) > d(pi, q)− r ≥ 0

since r ≥ d(pi, q). Thus d(pi, x) > 0 so x 6= pi for each i, and hence x ∈ Sc. Since then Br(q) ⊆ Sc,
Sc is open in X as claimed.

3. Consider R2 and let D = {(x, x2) | x ∈ R} be the subset consisting of all points satisfying
y = x2. Show that D is complete with respect to whichever of the Euclidean, taxicab, or box
metrics you prefer.

Proof. The set D is a closed subset of R2 since, for instance, it is the graph of the continuous
function f(x) = x2, and any closed subset of a complete metric space is itself complete. Thus since
R2 is complete, D is as well.

4. Let Cb[0, π] denote the space of bounded real-valued functions on [0, π] equipped with the sup
metric. For each of the following functions, determine with justification whether or not it belongs
to the open ball of radius π2 centered at the function f ∈ Cb[0, π] defined by f(x) = x.

g(x) = x sin(2x) and h(x) =

{
x− x2 if x ∈ Q
x if x /∈ Q



Solution. We claim that g ∈ Bπ2(f) but h /∈ Bπ2(f). First, we have:

|g(x)− f(x)| = |x|| sin 2x− 1| ≤ π(| sin 2x|+ 1) ≤ 2π

for all x ∈ [0, π]. Thus the supremum of all expressions |g(x) − f(x)| is smaller than or equal to
2π, which is smaller than π2, so d(g, f) < π2 where d is the sup metric. Hence g is in the open ball
Bπ2(f) as claimed.

Now, we have:

|h(x)− f(x)| =

{
x2 x ∈ Q
0 x /∈ Q

for each x ∈ [0, π]. The distance d(h, f) is the supremum of such expressions, and we claim that
this supremum is equal to π2. Indeed, for any x ∈ [0, π] ∩ Q we have x2 < π2, so π2 is an upper
bound for the set expressions which defines d(h, f). Now, for 0 < ε < π2, we have

√
π2 − ε <

√
π2.

Thus since Q is dense in R there exists r ∈ Q such that√
π2 − ε < r < π, for π2 − ε < r2 < π2.

Since |h(r)−f(r)| = r2, this shows that nothing smaller than π2 can be an upper bound for the set
of expressions |h(x)− f(x)| for x ∈ [0, π], so π2 is indeed the least upper bound. Thus d(h, f) = π2

so h is not in Bπ2(f). (It would be in the corresponding closed ball, however.)

5. Suppose that A is a dense subset of a metric space X and let p ∈ Ac be an element of its
complement in X. Show that any open ball around p contains infinitely many points of A. (Careful:
a sequence converging to p does not necessarily consist of infinitely many distinct points.)

Proof 1. Take any open ball Br(p) around p. Since A is dense in X, this ball contains some a1 ∈ A.
Now, take the smaller open ball Bd(p,a1)(p) of radius d(p, a1) > 0. Again since A is dense in X,
this ball contains some a2 ∈ A, and we must have a1 6= a2 since d(p, a2) < d(p, a1). Take the even
smaller open ball Bd(p,a2)(p), which again contains some a3 ∈ A such that a3 6= a2 and a3 6= a1
since

d(p, a3) < d(p, a2) < d(p, a1).

Continuing in this manner, taking balls at each step of small enough radii to exclude the previously
chosen point of A, we get an entire sequence of distinct elements of A

a1, a2, a3, . . . ,

all of which are in the original ball Br(p) we started with. Thus Br(p) contains infinitely many
points of A as claimed.

Proof 2. For a contradiction, suppose that there exists an open ball Br(p) around p which contains
only finitely many points of A. Call these finitely many points a1, . . . , an. Then the ball of radius

min{d(p, a1), . . . , d(p, an)} > 0

around p contains none of the ai, so it contains no element of A. This contradicts A being dense
in X, so we conclude that no such ball Br(p) can exist.
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