Math 320-2: Midterm 2 Solutions Northwestern University, Winter 2015

- 1. Give an example of each of the following. You do not have to justify your answer.
 - (a) A nonempty subset of $\mathbb{R}\setminus\mathbb{Q}$ which is both closed and open in $\mathbb{R}\setminus\mathbb{Q}$.
 - (b) A Cauchy sequence in C[0,1] relative to the sup metric.
 - (c) A metric on \mathbb{Q} relative to which \mathbb{Q} is complete.
 - (d) A dense subset of \mathbb{R} whose boundary consists of a single point.

Note: in parts (a) and (d) we are considering the standard absolute value metric.

- Solution. (a) The set $(1,2) \cap (\mathbb{R} \setminus \mathbb{Q})$ of irrational between 1 and 2 works, as does any subset of the form $(a,b) \cap (\mathbb{R} \setminus \mathbb{Q})$ where a < b are both rational.
- (b) Any constant sequence works, say $f_n(x) = 1$ for all n and all x, or more generally any uniformly convergent sequence.
- (c) The discrete metric works, since the only Cauchy sequences with respect to a discrete metric are ones which are eventually constant.
- (d) The set $\mathbb{R}\setminus\{0\}$ of nonzero real numbers is dense in \mathbb{R} (since any nonempty open interval contains a nonzero number) and has boundary $\{0\}$.
- **2.** Suppose that X is a metric space and $S = \{p_1, \ldots, p_n\}$ is a finite subset of X. Show, using only the definition of open, that the complement of S in X is open. (In other words, you cannot use the fact that S is closed in X and the complement of a closed set is open.)

Proof. Let $q \in S^c$. Then q is different from each p_i , so each distance $d(q, p_i)$ is positive. Set $r = \min\{d(q, p_1), \ldots, d(q, p_n)\}$, which is thus positive. We claim that the open ball $B_r(q)$ is contained in S^c . Indeed, if $x \in B_r(q)$, we have d(x, q) < r so for each $i = 1, \ldots, n$:

$$d(p_i, x) \ge d(p_i, q) - d(p, x) > d(p_i, q) - r \ge 0$$

since $r \ge d(p_i, q)$. Thus $d(p_i, x) > 0$ so $x \ne p_i$ for each i, and hence $x \in S^c$. Since then $B_r(q) \subseteq S^c$, S^c is open in X as claimed.

3. Consider \mathbb{R}^2 and let $D = \{(x, x^2) \mid x \in \mathbb{R}\}$ be the subset consisting of all points satisfying $y = x^2$. Show that D is complete with respect to whichever of the Euclidean, taxicab, or box metrics you prefer.

Proof. The set D is a closed subset of \mathbb{R}^2 since, for instance, it is the graph of the continuous function $f(x) = x^2$, and any closed subset of a complete metric space is itself complete. Thus since \mathbb{R}^2 is complete, D is as well.

4. Let $C_b[0,\pi]$ denote the space of bounded real-valued functions on $[0,\pi]$ equipped with the sup metric. For each of the following functions, determine with justification whether or not it belongs to the *open* ball of radius π^2 centered at the function $f \in C_b[0,\pi]$ defined by f(x) = x.

$$g(x) = x \sin(2x)$$
 and $h(x) = \begin{cases} x - x^2 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \notin \mathbb{Q} \end{cases}$

Solution. We claim that $g \in B_{\pi^2}(f)$ but $h \notin B_{\pi^2}(f)$. First, we have:

$$|g(x) - f(x)| = |x| |\sin 2x - 1| \le \pi(|\sin 2x| + 1) \le 2\pi$$

for all $x \in [0, \pi]$. Thus the supremum of all expressions |g(x) - f(x)| is smaller than or equal to 2π , which is smaller than π^2 , so $d(g, f) < \pi^2$ where d is the sup metric. Hence g is in the open ball $B_{\pi^2}(f)$ as claimed.

Now, we have:

$$|h(x) - f(x)| = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

for each $x \in [0, \pi]$. The distance d(h, f) is the supremum of such expressions, and we claim that this supremum is equal to π^2 . Indeed, for any $x \in [0, \pi] \cap \mathbb{Q}$ we have $x^2 < \pi^2$, so π^2 is an upper bound for the set expressions which defines d(h, f). Now, for $0 < \epsilon < \pi^2$, we have $\sqrt{\pi^2 - \epsilon} < \sqrt{\pi^2}$. Thus since \mathbb{Q} is dense in \mathbb{R} there exists $r \in \mathbb{Q}$ such that

$$\sqrt{\pi^2 - \epsilon} < r < \pi$$
, for $\pi^2 - \epsilon < r^2 < \pi^2$.

Since $|h(r) - f(r)| = r^2$, this shows that nothing smaller than π^2 can be an upper bound for the set of expressions |h(x) - f(x)| for $x \in [0, \pi]$, so π^2 is indeed the least upper bound. Thus $d(h, f) = \pi^2$ so h is not in $B_{\pi^2}(f)$. (It would be in the corresponding closed ball, however.)

5. Suppose that A is a dense subset of a metric space X and let $p \in A^c$ be an element of its complement in X. Show that any open ball around p contains *infinitely* many points of A. (Careful: a sequence converging to p does not necessarily consist of infinitely many distinct points.)

Proof 1. Take any open ball $B_r(p)$ around p. Since A is dense in X, this ball contains some $a_1 \in A$. Now, take the smaller open ball $B_{d(p,a_1)}(p)$ of radius $d(p,a_1) > 0$. Again since A is dense in X, this ball contains some $a_2 \in A$, and we must have $a_1 \neq a_2$ since $d(p,a_2) < d(p,a_1)$. Take the even smaller open ball $B_{d(p,a_2)}(p)$, which again contains some $a_3 \in A$ such that $a_3 \neq a_2$ and $a_3 \neq a_1$ since

$$d(p, a_3) < d(p, a_2) < d(p, a_1).$$

Continuing in this manner, taking balls at each step of small enough radii to exclude the previously chosen point of A, we get an entire sequence of distinct elements of A

$$a_1, a_2, a_3, \ldots,$$

all of which are in the original ball $B_r(p)$ we started with. Thus $B_r(p)$ contains infinitely many points of A as claimed.

Proof 2. For a contradiction, suppose that there exists an open ball $B_r(p)$ around p which contains only finitely many points of A. Call these finitely many points a_1, \ldots, a_n . Then the ball of radius

$$\min\{d(p,a_1),\ldots,d(p,a_n)\}>0$$

around p contains none of the a_i , so it contains no element of A. This contradicts A being dense in X, so we conclude that no such ball $B_r(p)$ can exist.