Math 320-2: Midterm 2 Solutions Northwestern University, Winter 2020

1. Give an example of each of the following. You do not have to justify your answer.

- (a) A non-constant function f(x) such that $\int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$ for all $n \in \mathbb{N}$.
- (b) A sequence of non-constant functions which converges in C[0,1] with the sup metric.
- (c) A non-empty metric space for which every subset is both closed and open.
- (d) A dense subset of $[e, \pi]$ with respect to the standard metric.

Solution. (a) By the orthogonality relations, a function like $f(x) = \cos mx$ for $m \neq 0$ works. (In fact, any non-constant even function works.)

- (b) The sequence $f_n(x) = \frac{x}{n}$ works. This converges to 0 uniformly on [0, 1].
- (c) Any nonempty set with the discrete metric works.
- (d) Something like (e, π) or $[e, \pi] \cap \mathbb{Q}$ works. (In fact technically, $[e, \pi]$ itself works.)

2. Suppose $f: [-\pi, \pi] \to \mathbb{R}$ is C^2 (i.e. continuously twice-differentiable). Show that the Fourier series of f converges uniformly to f on $[-\pi,\pi]$. You can take it for granted that for $n \ge 1$ the following relation between the Fourier coefficients of f and those of f' holds:

$$a_n(f') = nb_n(f)$$
 and $b_n(f') = -na_n(f)$.

Hint: Relate the Fourier coefficients of f to those of f''. Here's another hint: *M*-test.

Proof. This is Problem 4 on Homework 4. Check the solutions to Homework 4.

3. Let \mathbb{R}^+ denote the set of positive real numbers and define a metric on \mathbb{R}^+ by

$$d(x,y) = \left|\ln\frac{y}{x}\right|.$$

Take it for granted that this does define a metric.

(a) Determine explicitly the open ball $B_1(1)$ with respect to this metric.

(b) Show that this metric space is complete. (Take for granted the continuity of any singlevariable function you might need to use. The fact that \mathbb{R} is complete with respect to the standard metric is important.) Hint: There is an alternate way of expressing the logarithm of a fraction.

Solution. (a) By definition, $x \in B_1(1)$ precisely when $d(1,x) = |\ln \frac{x}{1}| < 1$. But $|\ln x| < 1$ is the same as

 $-1 < \ln x < 1$,

and since the exponential function is continuous this gives

$$e^{-1} < e^{\ln x} < e^{1}$$

Thus $x \in B_1(1)$ if and only if $\frac{1}{e} < x < e$, so $B_1(1) = (\frac{1}{e}, e)$. (b) Suppose (x_n) is Cauchy in \mathbb{R}^+ with respect to d. Then for any $\epsilon > 0$ there exists N such that

$$d(x_n, x_m) < \epsilon \text{ for } m, n \ge N.$$

But using the definition of d, this becomes

$$\left|\ln\frac{x_m}{x_n}\right| = \left|\ln(x_m) - \ln(x_n)\right| < \epsilon$$

for $m, n \geq N$. This says precisely that the sequence $(\ln x_n)$ is Cauchy in \mathbb{R} with respect to the standard metric, so since \mathbb{R} complete with respect to the standard metric we get that $\ln x_n$ converges, say to $y \in R$. But then for any $\epsilon > 0$, there exists N such that

$$|\ln x_n - y| < \epsilon \text{ for } n \ge N,$$

which is the same as

 $d(x_n, e^y) < \epsilon \text{ for } n \ge N$

since $d(x_n, e^y) = |\ln x_n - y|$. Thus x_n converges to $e^y \in \mathbb{R}^+$ with respect to d, showing that \mathbb{R}^+ is complete with respect to d.

4. Suppose $B_r(p)$ and $B_s(q)$ are two open balls in a metric space X. Show that $B_r(p) \cap B_s(q)$ is open in X, by finding for each $x \in B_r(p) \cap B_s(q)$ a radius t > 0 such that

$$B_t(x) \subseteq B_r(p) \cap B_s(q)$$

(Don't forget to prove that your claimed radius actually works. A picture will give the right intuition, but is not itself enough justification.)

Proof. Let $x \in B_r(p) \cap B_s(q)$ and set

$$t := \min\{r - d(p, x), s - d(q, x)\}$$

Note that since d(p, x) < r and d(q, x) < s, t is positive. If $y \in B_t(x)$, we have:

$$d(y,p) \le d(y,x) + d(x,p)$$

$$\le t + d(x,p)$$

$$\le (r - d(p,x)) + d(x,p)$$

$$= r$$

and

$$d(y,q) \le d(y,x) + d(x,q)$$

$$\le t + d(x,q)$$

$$\le (s - d(q,x)) + d(x,q))$$

$$= s.$$

Thus $y \in B_r(p)$ and $y \in B_s(q)$, so $y \in B_r(p) \cap B_s(q)$. Thus $B_t(x) \subseteq B_r(p) \cap B_s(q)$, so $B_r(p) \cap B_s(q)$ is open in X as claimed.

5. Suppose X is a metric space and $A \subseteq X$. Suppose p is in the closure of A but not in A itself. Show that there exists a sequence of *distinct* points of A which converges to p. (The characterization of the closure of A as the set of points $q \in X$ such that every open ball around q contains an element of A may be useful.)

Proof. (This is similar to Problem 5 on the second 2015 Midterm, only in that case there was no convergence requirement.) First, since p is in the closure of A, there exists a point a_1 of A in the ball of radius 1 around p. Now, since p is not in A, $d(a_1, p) > 0$, so min $\{d(a_1, p), 1/2\}$ is positive. Thus there exists a point a_2 of A in the ball of this radius min $\{d(a_1, p), 1/2\}$ around p.

Again we have $d(a_2, p) > 0$ since $a_2 \neq p$, so min $\{d(a_2, p), 1/3\}$ is positive and there is a point a_3 of A in the ball of this radius around p. Continuing in this manner, picking at the *n*-th stage a point a_n of A in the ball of radius min $\{d(a_{n-1}, p), 1/n\} > 0$ around p, results in a sequence (a_n) of A such that

$$d(a_n, p) > d(a_{n+1}, p)$$
 and $d(a_n, p) < \frac{1}{n}$

for all n. The first property guarantees that the a_n are all distinct, and the second that they converge to p, so this is the sequence we want.