
Math 320-2: Midterm 2 Solutions
Northwestern University, Winter 2020

1. Give an example of each of the following. You do not have to justify your answer.
(a) A non-constant function f(x) such that

! π
−π f(x) sinnx dx = 0 for all n ∈ N.

(b) A sequence of non-constant functions which converges in C[0, 1] with the sup metric.
(c) A non-empty metric space for which every subset is both closed and open.
(d) A dense subset of [e,π] with respect to the standard metric.

Solution. (a) By the orthogonality relations, a function like f(x) = cosmx for m ∕= 0 works. (In
fact, any non-constant even function works.)

(b) The sequence fn(x) =
x
n works. This converges to 0 uniformly on [0, 1].

(c) Any nonempty set with the discrete metric works.
(d) Something like (e,π) or [e,π] ∩Q works. (In fact technically, [e,π] itself works.)

2. Suppose f : [−π,π] → R is C2 (i.e. continuously twice-differentiable). Show that the Fourier
series of f converges uniformly to f on [−π,π]. You can take it for granted that for n ≥ 1 the
following relation between the Fourier coefficients of f and those of f ′ holds:

an(f
′) = nbn(f) and bn(f

′) = −nan(f).

Hint: Relate the Fourier coefficients of f to those of f ′′. Here’s another hint: M -test.

Proof. This is Problem 4 on Homework 4. Check the solutions to Homework 4.

3. Let R+ denote the set of positive real numbers and define a metric on R+ by

d(x, y) =
"""ln

y

x

""" .

Take it for granted that this does define a metric.
(a) Determine explicitly the open ball B1(1) with respect to this metric.
(b) Show that this metric space is complete. (Take for granted the continuity of any single-

variable function you might need to use. The fact that R is complete with respect to the standard
metric is important.) Hint: There is an alternate way of expressing the logarithm of a fraction.

Solution. (a) By definition, x ∈ B1(1) precisely when d(1, x) = | ln x
1 | < 1. But | lnx| < 1 is the

same as
−1 < lnx < 1,

and since the exponential function is continuous this gives

e−1 < elnx < e1.

Thus x ∈ B1(1) if and only if 1
e < x < e, so B1(1) = (1e , e).

(b) Suppose (xn) is Cauchy in R+ with respect to d. Then for any ε > 0 there exists N such
that

d(xn, xm) < ε for m,n ≥ N.

But using the definition of d, this becomes
""""ln

xm
xn

"""" = | ln(xm)− ln(xn)| < ε



for m,n ≥ N. This says precisely that the sequence (lnxn) is Cauchy in R with respect to the
standard metric, so since R complete with respect to the standard metric we get that lnxn converges,
say to y ∈ R. But then for any ε > 0, there exists N such that

| lnxn − y| < ε for n ≥ N,

which is the same as
d(xn, e

y) < ε for n ≥ N

since d(xn, e
y) = | lnxn − y|. Thus xn converges to ey ∈ R+ with respect to d, showing that R+ is

complete with respect to d.

4. Suppose Br(p) and Bs(q) are two open balls in a metric space X. Show that Br(p) ∩ Bs(q) is
open in X, by finding for each x ∈ Br(p) ∩Bs(q) a radius t > 0 such that

Bt(x) ⊆ Br(p) ∩Bs(q).

(Don’t forget to prove that your claimed radius actually works. A picture will give the right
intuition, but is not itself enough justification.)

Proof. Let x ∈ Br(p) ∩Bs(q) and set

t := min{r − d(p, x), s− d(q, x)}.

Note that since d(p, x) < r and d(q, x) < s, t is positive. If y ∈ Bt(x), we have:

d(y, p) ≤ d(y, x) + d(x, p)

≤ t+ d(x, p)

≤ (r − d(p, x)) + d(x, p)

= r

and

d(y, q) ≤ d(y, x) + d(x, q)

≤ t+ d(x, q)

≤ (s− d(q, x)) + d(x, q))

= s.

Thus y ∈ Br(p) and y ∈ Bs(q), so y ∈ Br(p)∩Bs(q). Thus Bt(x) ⊆ Br(p)∩Bs(q), so Br(p)∩Bs(q)
is open in X as claimed.

5. Suppose X is a metric space and A ⊆ X. Suppose p is in the closure of A but not in A itself.
Show that there exists a sequence of distinct points of A which converges to p. (The characterization
of the closure of A as the set of points q ∈ X such that every open ball around q contains an element
of A may be useful.)

Proof. (This is similar to Problem 5 on the second 2015 Midterm, only in that case there was no
convergence requirement.) First, since p is in the closure of A, there exists a point a1 of A in the
ball of radius 1 around p. Now, since p is not in A, d(a1, p) > 0, so min{d(a1, p), 1/2} is positive.
Thus there exists a point a2 of A in the ball of this radius min{d(a1, p), 1/2} around p.



Again we have d(a2, p) > 0 since a2 ∕= p, so min{d(a2, p), 1/3} is positive and there is a point
a3 of A in the ball of this radius around p. Continuing in this manner, picking at the n-th stage a
point an of A in the ball of radius min{d(an−1, p), 1/n} > 0 around p, results in a sequence (an) of
A such that

d(an, p) > d(an+1, p) and d(an, p) <
1

n

for all n. The first property guarantees that the an are all distinct, and the second that they
converge to p, so this is the sequence we want.


