Math 320-3: Midterm 2 Northwestern University, Spring 2015

Name:	

- 1. (10 points) Give an example of each of the following. No justification is required.
 - (a) A bounded subset of \mathbb{R}^3 which is not a Jordan region.
 - (b) A bounded function on $[0,1] \times [0,1]$ which is not integrable.

 - (c) A non-constant function on $[0,1] \times [0,1]$ whose iterated integrals exist and are equal. (d) A function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ which sends the rectangle $[0,1] \times [0,2\pi]$ to the ellipse $x^2 + 2y^2 \le 1$.

Problem	Score	
1		
2		
3		
4		
5		
Total		

2. (10 points) For a Jordan region E of \mathbb{R}^2 , let (1,1)+E denote the set obtained by adding (1,1) to each point of E:

$$(1,1)+E:=\{(1+x,1+y)\mid (x,y)\in E\}.$$

Show that (1,1) + E is also a Jordan region.

3. (10 points) Define $f:[0,1]\times[0,1]\to\mathbb{R}$ by

$$f(x,y) = \begin{cases} x & \text{if } y = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable over $[0,1] \times [0,1]$ and determine the value of its integral.

4. (10 points) Suppose that A and B are two Jordan regions in \mathbb{R}^2 such that for any vertical line L, the intersection of A with L has the same length as the intersection of B with L. Show that Aand B have the same area.

5. (10 points) Show that for any strictly positive continuous function $f: \mathbb{R}^2 \to \mathbb{R}$, we have

$$\int_{B_2(1,1)} 2f(x,y) d(x,y) > \int_{B_1(0,0)} 6f(1+2u,1+2v) d(u,v).$$

To be clear, $B_2(1,1)$ denotes the disk of radius 2 centered at (1,1) and $B_1(0,0)$ the disk of radius 1 centered at (0,0).