Math 320-3: Midterm 2
Northwestern University, Spring 2016

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A bounded subset of \mathbb{R} which is not a Jordan region.
(b) A bounded function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is integrable on $B_{1}(0,0)$ but not on $B_{2}(0,0)$.
(c) An integrable function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$ does not exist.
(d) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\int_{D} 2 d V=\int_{f(D)} 4 d V$ for any Jordan region $D \subseteq \mathbb{R}^{n}$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $A, B \subseteq \mathbb{R}^{2}$ are Jordan regions, which implies that $A \cup B$ is also Jordan measurable. If $A \cap B$ has Jordan measure zero, show that

$$
\operatorname{Vol}(A \cup B)=\operatorname{Vol} A+\operatorname{Vol} B
$$

(This is an exercise in the book, but of course the point here is to prove this fact without simply quoting the result of that exercise.)
3. (10 points) Suppose $B \subseteq \mathbb{R}^{2}$ is a rectangle and that $f: B \rightarrow \mathbb{R}$ is uniformly continuous, which, to recall, means that for any $\epsilon>0$ there exists $\delta>0$ such that,

$$
\text { if } \mathbf{x}, \mathbf{y} \in B \text { and }\|\mathbf{x}-\mathbf{y}\|<\delta \text {, then }|f(\mathbf{x})-f(\mathbf{y})|<\epsilon .
$$

Show that f is integrable over B. (This is also in the book, but again the point is to prove this fact without simply quoting the result in the book.) Hint: Since f is continuous, it achieves a maximum (i.e. supremum) and a minimum value (i.e. infimum) value on any rectangle.
4. (10 points) Define $f:[0,1] \times[0,2] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q} \text { and } y \leq 1 \\ 2 & \text { if } x \notin \mathbb{Q} \text { and } y>1 .\end{cases}
$$

Of the two possible iterated integrals:

$$
\int_{0}^{2} \int_{0}^{1} f(x, y) d x d y \text { and } \int_{0}^{1} \int_{0}^{2} f(x, y) d y d x
$$

one exists and the other does not. Determine which exists and find its value.
5. (10 points) Show that

$$
\lim _{b \rightarrow \infty} \iint_{[-b, b] \times[-b, b]} e^{-\left(x^{2}+y^{2}\right)} d A=\pi
$$

Hint: First argue that

$$
\iint_{B_{b}(0,0)} e^{-\left(x^{2}+y^{2}\right)} d A \leq \iint_{[-b, b] \times[-b, b]} e^{-\left(x^{2}+y^{2}\right)} d A \leq \iint_{B_{b \sqrt{2}}(0,0)} e^{-\left(x^{2}+y^{2}\right)} d A .
$$

(Side note: this fact is the key to showing that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, which is an important equality in probability and statistics.)

