Math 320-3: Midterm 2 Northwestern University, Spring 2016

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A bounded subset of \mathbb{R} which is not a Jordan region.

 - (b) A bounded function $f : \mathbb{R}^2 \to \mathbb{R}$ which is integrable on $B_1(0,0)$ but not on $B_2(0,0)$. (c) An integrable function $f : [0,1] \times [0,1] \to \mathbb{R}$ such that $\int_0^1 \int_0^1 f(x,y) \, dx \, dy$ does not exist. (d) A function $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $\int_D 2 \, dV = \int_{f(D)} 4 \, dV$ for any Jordan region $D \subseteq \mathbb{R}^n$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $A, B \subseteq \mathbb{R}^2$ are Jordan regions, which implies that $A \cup B$ is also Jordan measurable. If $A \cap B$ has Jordan measure zero, show that

$$\operatorname{Vol}(A \cup B) = \operatorname{Vol} A + \operatorname{Vol} B.$$

(This is an exercise in the book, but of course the point here is to prove this fact without simply quoting the result of that exercise.)

3. (10 points) Suppose $B \subseteq \mathbb{R}^2$ is a rectangle and that $f : B \to \mathbb{R}$ is uniformly continuous, which, to recall, means that for any $\epsilon > 0$ there exists $\delta > 0$ such that,

if
$$\mathbf{x}, \mathbf{y} \in B$$
 and $\|\mathbf{x} - \mathbf{y}\| < \delta$, then $|f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$.

Show that f is integrable over B. (This is also in the book, but again the point is to prove this fact without simply quoting the result in the book.) Hint: Since f is continuous, it achieves a maximum (i.e. supremum) and a minimum value (i.e. infimum) value on any rectangle.

4. (10 points) Define $f:[0,1]\times [0,2] \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \text{ and } y \le 1 \\ 2 & \text{if } x \notin \mathbb{Q} \text{ and } y > 1. \end{cases}$$

Of the two possible iterated integrals:

$$\int_{0}^{2} \int_{0}^{1} f(x, y) \, dx \, dy \quad \text{and} \quad \int_{0}^{1} \int_{0}^{2} f(x, y) \, dy \, dx,$$

one exists and the other does not. Determine which exists and find its value.

5. (10 points) Show that

$$\lim_{b \to \infty} \iint_{[-b,b] \times [-b,b]} e^{-(x^2 + y^2)} \, dA = \pi.$$

Hint: First argue that

$$\iint_{B_b(0,0)} e^{-(x^2+y^2)} \, dA \le \iint_{[-b,b]\times[-b,b]} e^{-(x^2+y^2)} \, dA \le \iint_{B_b\sqrt{2}(0,0)} e^{-(x^2+y^2)} \, dA.$$

(Side note: this fact is the key to showing that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, which is an important equality in probability and statistics.)