Math 320-3: Midterm 2 Northwestern University, Spring 2020

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.
 - (a) A point at which $f(x, y) = (e^{xy}, x \sin y)$ is locally invertible.
 - (b) A point at which f(x, y) = xy achieves its maximum value subject to ||(x, y)|| = 1.
 - (c) Sets $A, B \subseteq \mathbb{R}^2$ which are not Jordan regions but for which $A \cup B$ is a Jordan region. (d) A bounded function f(x, y, z) on the unit ball $B_1(\mathbf{0})$ in \mathbb{R}^3 which is not integrable.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 and that $E \subseteq \mathbb{R}^n$ is compact and convex. Show that f is uniformly continuous on E. (You cannot simply quote the fact that any continuous function on a compact domain is automatically uniformly continuous.) Hint: Mean Value Theorem.

3. (a) (5 points) Consider the following system of nonlinear equations:

$$x^{2}y + yz - z = 1$$

 $x^{3}y^{3}z^{2} - 3xy = -2.$

The point (1, 1, 1) is one solution. Show that there are infinitely many others.

(b) (5 points) Now consider the system:

$$x^{2}y + yz - z = 1$$
$$x^{3}y^{3}z^{2} - 3xy = -2$$
$$xy - xz = 0.$$

Determine, with justification, the number of solutions this system has near (1, 1, 1).

4. (10 points) Suppose $E \subseteq \mathbb{R}^n$ is a Jordan region. Define 3E to be the set obtained by scaling all points in E by 3:

$$3E := \{ 3\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \in E \}.$$

Show, using only an argument based on grids and outer sums, that 3E is a Jordan region and that $Vol(3E) = 3^n Vol(E)$.

5. (10 points) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is integrable on two closed Jordan regions $A, B \subseteq \mathbb{R}^2$ which intersect at only one point. Take it for granted that f is then integrable on $A \cup B$, and show that

$$\int_{A\cup B} f(\mathbf{x}) \, d\mathbf{x} = \int_A f(\mathbf{x}) \, d\mathbf{x} + \int_B f(\mathbf{x}) \, d\mathbf{x}$$

You cannot simply quote the result in the book (Theorem 12.23) which says that this is true; the point here is to give a proof of precisely this fact in this special case, which is much simpler than the full version in the book. You can use the book's version as a guide to figure out what you need to do, but do not simply reproduce the book's full version.