Math 320-2: Midterm 2
 Northwestern University, Winter 2016

Name: \qquad

1. (10 points) Give an example of each of the following. You do not have to justify your answer.
(a) A metric on \mathbb{R} relative to which the sequence $\left(\frac{1}{n}\right)$ does not converge to 0 .
(b) A subset of \mathbb{Q} which is closed and open in \mathbb{Q} with respect to the Euclidean metric.
(c) A non-closed subset of \mathbb{R}^{2} which does not equal its interior relative to the Euclidean metric.
(d) A metric space (X, d) which is not complete.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose that (X, d) is a metric space, $p \in X$, and r_{1}, r_{2} are real numbers such that $r_{2}>r_{1}>0$. Let U be the subset of X consisting of all points whose distance to p is strictly between r_{1} and r_{2} :

$$
U:=\left\{x \in X \mid r_{1}<d(x, p)<r_{2}\right\}
$$

For $x \in U$, give an explicit radius r such that $B_{r}(x) \subseteq U$ and prove that your answer is correct. To be clear, an "explicit" radius can still depend on data given in the problem, such as p and the values of r_{1} and r_{2}.
3. (10 points) Consider the metric space $C[-2,1]$ of continuous functions $f:[-2,1] \rightarrow \mathbb{R}$ equipped with the sup metric:

$$
d(f, g)=\sup _{x \in[-2,1]}|f(x)-g(x)| .
$$

Show that the sequence $\left(f_{n}\right)$ in $C[-2,1]$ defined by

$$
f_{n}(x)=x \sin \left(\frac{x}{n}\right) .
$$

is Cauchy with respect to the sup metric. Hint: $|\sin y| \leq|y|$ for all $y \in \mathbb{R}$.
4. (10 points) Let (X, d) be a metric space. Show that a subset $A \subseteq X$ has empty boundary in X if and only if both A and its complement A^{c} are open in X.
5. (10 points) Consider \mathbb{R}^{2} with respect to the Euclidean metric. Let $p_{1}, p_{2}, p_{3} \in \mathbb{R}^{2}$ be three points in \mathbb{R}^{2}. Show that the subset A of \mathbb{R}^{2} obtained by removing these points:

$$
A:=\left\{q \in \mathbb{R}^{2} \mid q \neq p_{1}, q \neq p_{2}, \text { and } q \neq p_{3}\right\},
$$

otherwise known as the complement of $\left\{p_{1}, p_{2}, p_{3}\right\}$ in \mathbb{R}^{2}, is dense in \mathbb{R}^{2}.

