Math 320-2: Midterm 2 Northwestern University, Winter 2016

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.

 - (a) A metric on \mathbb{R} relative to which the sequence $(\frac{1}{n})$ does not converge to 0. (b) A subset of \mathbb{Q} which is closed and open in \mathbb{Q} with respect to the Euclidean metric. (c) A non-closed subset of \mathbb{R}^2 which does not equal its interior relative to the Euclidean metric.
 - (d) A metric space (X, d) which is not complete.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose that (X, d) is a metric space, $p \in X$, and r_1, r_2 are real numbers such that $r_2 > r_1 > 0$. Let U be the subset of X consisting of all points whose distance to p is strictly between r_1 and r_2 :

$$U := \{ x \in X \mid r_1 < d(x, p) < r_2 \}$$

For $x \in U$, give an explicit radius r such that $B_r(x) \subseteq U$ and prove that your answer is correct. To be clear, an "explicit" radius can still depend on data given in the problem, such as p and the values of r_1 and r_2 . **3.** (10 points) Consider the metric space C[-2, 1] of continuous functions $f : [-2, 1] \to \mathbb{R}$ equipped with the sup metric:

$$d(f,g) = \sup_{x \in [-2,1]} |f(x) - g(x)|.$$

Show that the sequence (f_n) in $\mathbb{C}[-2,1]$ defined by

$$f_n(x) = x \sin\left(\frac{x}{n}\right).$$

is Cauchy with respect to the sup metric. Hint: $|\sin y| \le |y|$ for all $y \in \mathbb{R}$.

4. (10 points) Let (X, d) be a metric space. Show that a subset $A \subseteq X$ has empty boundary in X if and only if both A and its complement A^c are open in X.

5. (10 points) Consider \mathbb{R}^2 with respect to the Euclidean metric. Let $p_1, p_2, p_3 \in \mathbb{R}^2$ be three points in \mathbb{R}^2 . Show that the subset A of \mathbb{R}^2 obtained by removing these points:

$$A := \{ q \in \mathbb{R}^2 \mid q \neq p_1, q \neq p_2, \text{ and } q \neq p_3 \},\$$

otherwise known as the complement of $\{p_1, p_2, p_3\}$ in \mathbb{R}^2 , is dense in \mathbb{R}^2 .