Math 320-2: Midterm 2 Northwestern University, Winter 2020

Name:

- 1. (10 points) Give an example of each of the following. You do not have to justify your answer.

 - (a) A non-constant function f(x) such that $\int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$ for all $n \in \mathbb{N}$. (b) A sequence of non-constant functions which converges in C[0, 1] with the sup metric.
 - (c) A non-empty metric space for which every subset is both closed and open.
 - (d) A dense subset of $[e, \pi]$ with respect to the standard metric.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $f : [-\pi, \pi] \to \mathbb{R}$ is C^2 (i.e. continuously twice-differentiable). Show that the Fourier series of f converges uniformly to f on $[-\pi, \pi]$. You can take it for granted that for $n \ge 1$ the following relation between the Fourier coefficients of f and those of f' holds:

$$a_n(f') = nb_n(f)$$
 and $b_n(f') = -na_n(f)$.

Hint: Relate the Fourier coefficients of f to those of f''. Here's another hint: *M*-test.

3. (10 points) Let \mathbb{R}^+ denote the set of positive real numbers and define a metric on \mathbb{R}^+ by

$$d(x,y) = \left|\ln\frac{y}{x}\right|.$$

Take it for granted that this does define a metric.

(a) Determine explicitly the open ball $B_1(1)$ with respect to this metric.

(b) Show that this metric space is complete. (Take for granted the continuity of any single-variable function you might need to use. The fact that \mathbb{R} is complete with respect to the standard metric is important.) Hint: There is an alternate way of expressing the logarithm of a fraction.

4. (10 points) Suppose $B_r(p)$ and $B_s(q)$ are two open balls in a metric space X. Show that $B_r(p) \cap B_s(q)$ is open in X, by finding for each $x \in B_r(p) \cap B_s(q)$ a radius t > 0 such that

$$B_t(x) \subseteq B_r(p) \cap B_s(q).$$

(Don't forget to prove that your claimed radius actually works. A picture will give the right intuition, but is not itself enough justification.)

5. (10 points) Suppose X is a metric space and $A \subseteq X$. Suppose p is in the closure of A but not in A itself. Show that there exists a sequence of *distinct* points of A which converges to p. (The characterization of the closure of A as the set of points $q \in X$ such that every open ball around q contains an element of A may be useful.)