
Notes on Analytic Functions

In these notes we define the notion of an analytic function. While this is not something we
will spend a lot of time on, it becomes much more important in some other classes, in particular
complex analysis.

First we recall the following facts, which are useful in their own right:

Theorem 1. Let (fn) be a sequence of functions on (a, b) and suppose that each fn is differentiable.
If (fn) converges to a function f uniformly and the sequence of derivatives (f ′n) converges uniformly
to a function g, then f is differentiable and f ′ = g.

So, the uniform limit of differentiable functions is itself differentiable as long as the sequence of
derivatives also converges uniformly, in which case the derivative of the uniform limit is the uniform
limit of the derivatives. We will not prove this here as the proof is not easy; however, note that
the proof of Theorem 26.5 in the book can be modified to give a proof of the above theorem in the
special case that each derivative f ′n is continuous.

Note that we need the extra assumption that the sequence of derivatives converges uniformly,
as the following example shows:

Example 1. For each n, let fn : (−1, 1) be the function fn(x) =
√
x2 + 1

n . We have seen before

that (fn) converges uniformly to f(x) = |x| on (−1, 1). Each fn is differentiable at 0 but f is not,
so the uniform limit of differentiable functions need not be differentiable.

We shouldn’t expect that the uniform limit of differentiable functions be differentiable for the fol-
lowing reason: differentiability is a local condition which measures how rapidly a function changes,
while uniform convergence is a global condition which measures how close functions are to one
another. The idea is that we could have two functions very close to one another (say in the sup
metric sense) but so that one is changing much more rapidly in which case their derivative may
no longer be close to one another. To guarantee this, we need some extra assumptions as in the
theorem.

Using the above result, we can give a proof that power series are (infinitely) differentiable which
is different than the one given in the book, using the fact that power series converge uniformly on
certain intervals. We will also need Lemma 26.3 in the book, showing that a power series and the
series obtained by differentiating term-by-term have the same radius of convergence.

Theorem 2. Suppose that
∑
anx

n is a power series which radius of convergence R > 0. Then the
function f to which

∑
anx

n converges is infinitely differentiable on (−R,R).

Proof. Let 0 < R1 < R. Then
∑
anx

n converges to f uniformly on [−R1, R1]. This means that
the sequence (fk) of partial sums:

fk = a0 + a1x+ · · ·+ akx
k

converges uniformly to f on [−R1, R1]. Now, each fk is differentiable and

f ′k = a1 + 2a2x+ · · ·+ kakx
k−1.

However, now we see that the functions f ′k are the partial sums of the series
∑
nanx

n−1. Since
this latter series also has radius of convergence R, it converges to some function g on (−R,R),
and moreover its sequence of partial sums (f ′k) converges uniformly to g on [−R1, R1]. Since (fk)
converges uniformly to f on [−R1, R1], each fk is differentiable on (−R1, R1), and (f ′k) converges



uniformly to g on [−R1, R1], Theorem 1 says that f is differentiable and f ′ = g; i.e., the power
series

∑
anx

n is differentiable on (−R1, R1) and its derivative is
∑
nanx

n−1. Taking R1 → R shows
that

∑
anx

n is differentiable on all of (−R,R).
Applying the same result to the power series

∑
nanx

n−1 shows that this is differentiable, so
the original series was twice differentiable, and continuing in this manner shows that the original
series is infinitely differentiable on (−R,R).

The upshot is that power series are (infinitely) differentiable on their intervals of convergence,
and their derivatives are obtained by differentiating term-by-term, so that you can manipulate them
as if they were infinite polynomials. Note also that the same works for series

∑
an(x− x0)n which

are not centered at 0.
Now we come to the notion of analyticity. Roughly, an analytic function is one which can be

expressed as a power series, although the power series needed to do so may change from point to
point:

Definition 1. A function f : (a, b) → R is said to be analytic if for any x0 ∈ (a, b) there exists
a power series

∑
an(x − x0)n and an open interval Ix0 centered at x0 such that

∑
an(x − x0)n

converges to f on Ix0 .

Example 2. Many of your favorite functions from calculus are analytic, such as

ex =
∞∑
n=0

xn

n!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, and cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
.

Each of these series actually converge on all of R.

Example 3. Here is an example of an analytic function were we need different series to express it.
Let f : R\{1} → R be the function f(x) = 1

1−x . We know that

f(x) =

∞∑
n=0

xn for x ∈ (−1, 1),

showing that f is analytic on (−1, 1). We claim that f is analytic on all of R\{1}, but now we see
that to express f as a convergent power series for |x| > 1, the above series won’t work.

How do we express the above function as a power series for |x| > 1? Note the following. Suppose
that f is analytic and fix x0. According to the definition, there is some power series

∑
an(x−x0)n

such that

f(x) =
∑

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + · · · for x close enough to x0.

The first thing to note is that since power series are always differentiable (in fact, infinitely dif-
ferentiable), an analytic function must itself be infinitely differentiable. We can use this fact to
determine what the coefficients an in the above expression must be.

Plugging in x = x0 gives

f(x0) = a0 + a1(x0 − x0) + a2(x0 − x0)2 + · · · = a0

since all terms with a positive power of x − x0 vanish when plugging in x0. Taking derivatives of
f(x) =

∑
an(x− x0)n at x = x0 gives

f ′(x) = a1 + 2a2(x− x0) + higher order terms,
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so
f ′(x0) = a1 + 2a2(x0 − x0) + · · · = a1.

In general, we have

f (k)(x) = k!ak + (k + 1)!ak+1(x− x0) + higher order terms,

so
f (k)(x0) = k!ak.

The upshot is that when expressing f as a power series of the form
∑
an(x− x0)n, the coefficients

an must be the so-called Taylor coefficients of f at x0:

ak =
f (k)(x0)

k!
.

The series
∑ f (k)(x0)

k! (x − x0)
n is called the Taylor series of f around x0. Using this, we can

reformulate the definition of an analytic function as follows:

Definition 2. An infinitely-differentiable function f : (a, b) → R is analytic if for any x0 ∈ (a, b),
the Taylor series of f around x0 has positive radius of convergence and converges to f on its interval
of convergence.

The point is that we have no choice as to what power series we need when trying to express
a function as a power series, we must use the Taylor series. The only remaining questions that
determine whether or not a function is analytic is whether its Taylor series around any point has
positive radius of convergence, and, more importantly, whether its Taylor series converges to the
function itself.

Example 4. Returning to the function f : R\{1} → R of Example 3, to express 1
1−x as a power

series at any x 6= 1, we compute its Taylor series. It will turn out that this Taylor series will have
positive radius of convergence and will converge to 1

1−x .

Example 5. Not all infinitely differentiable functions are analytic. For example, let f : R→ R be
the function defined by

f(x) =

{
e−

1
x if x > 0

0 if x ≤ 0.

Example 3 in Section 31 of the book shows that this function is infinitely differentiable, and in
particular that f (k)(0) = 0 for all k. Thus, the Taylor series of f around 0 is the zero series, which
has infinite radius of convergence but does not equal f for x > 0. Thus f is not analytic.

So, there are functions which are differentiable but not twice differentiable, twice differentiable
but not three times differentiable, k times differentiable but not k + 1 times differentiable, and
infinitely differentiable but not analytic. One of the amazing things you will see in complex analysis
is that there are no such distinctions among complex differentiable functions.

Finally, let us give one important property of analytic functions, showing that they are in a
sense rigid.

Theorem 3. Suppose that f, g are two analytic functions on R. If f(x) = g(x) for all x in some
interval (a, b), then f = g on all of R.
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The point is that the interval (a, b) can be incredibly small, and nevertheless having analytic
functions equal on any small interval whatsoever forces them to be the same everywhere. Quite
an amazing fact, given that it is easy to draw graphs of infinitely differentiable functions where
something like this wouldn’t be true.

First we prove a lemma, saying that nonzero analytic functions are isolated zeros:

Lemma 1. Suppose that f : R → R is a nonzero, analytic function and that c ∈ R satisfies
f(c) = 0. Then there is an interval (c− δ, c+ δ), with δ > 0, around c on which f is nonzero except
at c itself.

Proof. Since f is analytic, there is an interval I around c and a power series

∞∑
n=0

an(x− c)n

which converges to f(x) for any x ∈ I. (Actually, this will be the Taylor series of f around c and I
will be the interval of convergence of this series, but we don’t need that precise description here.)
Since f is not the zero function, this power series is not the zero series, so at least one coefficient is
nonzero—let k be the smallest positive integer so that ak 6= 0. Note that k ≥ 1 since a0 = f(c) = 0.

Define the function g on I by setting

g(x) =

∞∑
n=0

an+k(x− c)n for x ∈ I.

Note that g then is also analytic on I, so in particular it is continuous. Since ak = g(c) 6= 0, there
exists δ > 0 so that for any y ∈ (c − δ, c + δ), g(y) 6= 0. To see this, note that the set of points
where g is nonzero is open in I since it is the preimage under the continuous function g of the open
subset R\{0} of R; thus c is an interior point of this set, so there exists δ > 0 such that (c−δ, c+δ)
is contained within the set of points where g is nonzero. Another way to see this is to note that
since |g(c)| > 0, by the ε-δ definition of continuity at c, there exists δ > 0 so that

|c− x| < δ implies |g(c)− g(x)| < |g(c)|.

Since |g(c)| − |g(x)| ≤ |g(c)− g(x)|, from this it follows that for such x in the δ-interval around c,
|g(x)| > 0, so g(x) 6= 0.

We then have
f(x) = (x− c)kg(x) for any x ∈ (c− δ, c+ δ).

Since g is nonzero on this interval, this then can only be zero when (x− c)k is zero, and hence only
at x = c. Thus (c− δ, c+ δ) is an interval around c on which f is nonzero except at c itself.

Proof of Theorem. Consider the function f − g. This is analytic on R and has non-isolated zeros
since f(x)− g(x) = 0 for x ∈ (a, b). The lemma then implies that f − g must be the zero function,
so f = g on all of R as claimed.

Finally, we show that power series are always integrable, and that their integrals are given
by term by term differentiation. First, we need the following fact, showing that integrability is
preserved under uniform convergence:

Theorem 4. Suppose that (fn) is a sequence of integrable functions on [a, b] converging uniformly
to f . Then f is integrable and ∫ b

a
f = lim

n→∞

∫ b

a
fn.
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Proof. We show that f is integrable using the Riemann-Lebesgue theorem; on the final homework
you will show this directly using the definition of integrability. We know that if each fn is continuous
at x ∈ [a, b], then the uniform limit f is also continuous at x. Thus, if f is not continuous at some
point, it must be that at least one of the fn’s is also discontinuous at that point. Hence, the
discontinuity set of f is contained in the union of the discontinuity sets of the fn’s:

D(f) ⊆
⋃
n

D(fn).

Since each fn is integrable, each D(fn) is a zero set. Hence so is their countable union, and thus
so is the subset D(f). Since the uniform limit of bounded functions is bounded, this shows that f
is integrable by the Riemann-Lebesgue theorem.

Let ε > 0 and choose N such that

|fn(x)− f(x)| < ε

b− a
for n ≥ N.

Then for n ≥ N , we have∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ =

∣∣∣∣∫ b

a
(f − fn)

∣∣∣∣ ≤ ∫ b

a
|f(x)− fn(x)| dx ≤

∫ b

a

ε

b− a
dx = ε.

We conclude that the sequence of numbers
∫ b
a fn converges to

∫ b
a f , as claimed.

Now we show that power series are always integrable; we will need Lemma 26.3 in the book,
showing that a power series and the one obtained by term-by-term integration have the same radius
of convergence.

Theorem 5. Suppose that the power series
∑
anx

n has radius of convergence R > 0. Then for
any 0 < R1 < R, the function to which

∑
anx

n is integrable on [−R1, R1] and∫ R1

−R1

(∑
anx

n
)
dx =

∑(∫ R1

−R1

anx
n dx

)
.

Proof. Let f be the function to which
∑
anx

n converges on (−R,R). Then the sequence of partial
sums:

fn = a0 + a1x+ · · ·+ anx
n

converges uniformly to f on [−R1, R1]. Since each fn is integrable (since it is continuous), the
previous theorem implies that f is integrable on [−R1, R1] and∫ R1

−R1

f = lim
n→∞

∫ R1

−R1

fn.

But the sequence of numbers
∫ R1

−R1
fn are the partial sums of the series

∑(∫ R1

−R1

anx
n dx

)
,

which also converges on (−R,R). We conclude that∫ R1

−R1

(∑
anx

n
)
dx =

∫ R1

−R1

f = lim
n→∞

∫ R1

−R1

fn =
∑(∫ R1

−R1

anx
n dx

)
as claimed.
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